Marzano's (Nine) High-Yield Instructional Strategies

By Robert J. Marzano

Adapted from the book: Classroom Instruction that Works: Research-based Strategies for Increasing Student Achievement, by Robert Marzano (2001)

| $\begin{array}{c}\text { High Yield Instructional } \\ \text { Strategies }\end{array}$ | What the Research says: | How it looks in the Classroom: |
| :---: | :--- | :--- |\(\left.\left.\quad \begin{array}{l}Identifying similarities and

$$
\begin{array}{c}\text { differences } \\
\text { (Yields a 45 percentile gain) }\end{array}
$$

\hline $$
\begin{array}{l}\text { Students should compare, classify, and create } \\
\text { metaphors, analogies and non-linguistic or } \\
\text { graphic representations }\end{array}
$$\end{array} $$
\begin{array}{l}\text { Thinking Maps, T-charts, Venn diagrams, } \\
\text { classifying, analogies, cause and effect links, } \\
\text { compare and contrast organizers }\end{array}
$$\right\} $$
\begin{array}{l}\text { QAR (Question/Answer/Relationship), sketch to } \\
\text { stretch, affinity diagrams, Frayer model (see } \\
\text { below) }\end{array}
$$\right]\)
$\left.\begin{array}{|c|l|l|}\hline \text { Reinforcing effort and providing } \\ \begin{array}{c}\text { recognition }\end{array} & \begin{array}{l}\text { Teachers should reward based on standards of } \\ \text { performance; use symbolic recognition rather } \\ \text { (han just tangible rewards. }\end{array} & \begin{array}{l}\text { Hold high expectations, display finished products, } \\ \text { praise students' effort, encourage students to share } \\ \text { ideas and express their thoughts, honor individual } \\ \text { learning styles, conference individually with students, } \\ \text { authentic portfolios, stress-free environment, high- } \\ \text { fives, Spelling Bee, Constitution Day, School }\end{array} \\ \text { Newspaper, etc. }\end{array}\right]$

Generating and testing hypothesis (Yields a 23 percentile gain)	Students should generate, explain, test and defend hypotheses using both inductive and deductive strategies through problem solving, history investigation, invention, experimental inquiry, and decision making.	Thinking processes, constructivist practices, investigate, explore, social construction of knowledge, use of inductive and deductive reasoning, questioning the author of a book, finding other ways to solve same math problem, etc.
Questions, cues, and advanceorganizers	Teachers should use cues and questions that focus on what is important (rather than unusual), use ample wait time before accepting responses, eliciting inference and analysis. Advance organizers should focus on what is important and are more useful with information that is not well organized.	Graphic organizers, provide guiding questions before each lesson, think alouds, inferencing, predicting, drawing conclusion, skim chapters to identify key vocabulary, concepts and skills, foldables, annotating the text, etc.
(Yields 22 percentile gain)		

HIGH-YIELD INSTRUCTIONAL STRATEGIES
 SIMILARITIES AND DIFFERENCES

There are four basic types of tasks that focus on identifying similarities and differences for knowledge development:
\rightarrow Comparing
\rightarrow Classifying
\rightarrow Creating Metaphors
\rightarrow Creating Analogies

Identifying similarities and differences

Identifying similarities and differences

Comparison Matrix		
Name 1 Name 2 Attribute 1 Attribute 2 Attribute 3 Used to show similarities and differences between two things (people, places, events, ideas, etc.). Key frame questions: What things are being compared? How are they similar? How are they different? Identifying similarities and differences		

Cause and Effect Links

A cause is something that makes something else happen. Out of two events, it is the event that happens first. To determine the cause, ask the question "Why did it happen?"

An effect is what happens as a result of the cause. Of two related events, it's the one that happens second or last. To determine the effect, ask the question "What happened?"

At times conjunctions (connecting words) are used to link the cause and effect.
Examples of common conjunctions (connecting words) are:

since as a result therefore consequently the reason for thus due to + nou	as a result consequently thus due to + noun phrase	because due to the fact so because of + noun phrase			
Venn Diagrams	Compare and Contrast Text/Character Comparison			Definition	del
	The Life Events of:	Me, Too	Explanation	Definition	Illustration
				Example	Non-example
Identifying similarities and differences	Identifying similarities and differences			Identifying similarities and differences	

Sketch to Stretch

1. Students listen as a story, article, or poem is read to them.
2. Students draw a picture that expresses:

- how the story, article or poem makes them feel
- what they think story, article or poem story means
- what they think the author looks like
- anything that comes to mind during the reading

3. Students explain their drawing to a partner/small group.

The class discusses the similarities/differences in their pictures.

__ate family

_at family

Sort the word cards (or pictures) into the correct bucket.

Identifying similarities and differences

Comparing Frame

FRACTIONS and DECIMALS are similar because they both
\qquad
\qquad
FRACTIONS and DECIMALS are different because
fractions \qquad , but decimals \qquad .
fractions \qquad , but decimals \qquad -
fractions \qquad , but decimals \qquad .

Identifying similarities and differences

Creating Analogies

Analogies help us see how seemingly dissimilar things are similar, increasing our understanding of new information.
$\mathbf{E x}$: core is to earth as nucleus is to atom.

Thermometer ...is to...Temperature

as

odometer ...is to...speed
(Both measure things)
Identifying similarities and differences

