SCORING CRITERIA

β

e⁻

e

Ν

SCIENCE

e

PHYSICAL SCIENCES: STRUCTURE AND PROPERTIES OF MATTER / FORCES AND INTERACTIONS (PS1 + PS2)

GRADE K-2

 \checkmark

100°C

V

β

Ν

V

 \checkmark

β

Δ

e⁻

р

Ν

p⁺

β

GRADE 3-5

GRADE 6-8

GRADE 9-12

RIDE Rhode Island Department of Education

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of structure, properties, and interactions of matter (PS1) and explain and predict interactions between objects and within systems of objects (PS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. (K-PS2-1)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Participate in an investigation to make observations about the motion of objects.	Participate in an investigation to identify the effects of various pushes or pulls on the motion of objects.	Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.	Plan and conduct an investigation to explain why different strengths or directions of pushes and pulls affect the motion of objects.

PERFORMANCE INDICATOR

Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* (K-PS2-2)

AII	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Observe and identify a change in speed or direction of an object by using data.	Organize data to show how the push or pull from a design solution changes the speed or direction of an object.	Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.	Suggest improvements to the design solution that would cause a change in speed or direction of an object.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. (2-PS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Participate in an investigation to make observations about properties of various materials.	Participate in an investigation to identify and classify observable properties of materials.	Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.	Plan and conduct an investigation to compare and contrast different kinds of materials by their observable properties.

PERFORMANCE INDICATOR

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* (2-PS1-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Use data to identify properties of various materials.	Use data from testing different materials to determine relationships between materials, their properties, and their use.	Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.	Use data obtained from testing different materials to justify selection of materials that are best suited for an intended purpose.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. (2-PS1-3)

AIS	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations to describe an object.	Make observations to provide a detailed description of an object and its parts.	Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.	Use evidence from observations to hypothesize different types of objects that could be made from the same small set of pieces.

PERFORMANCE INDICATOR

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. (2-PS1-4)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Make a claim about what happens when a substance is heated or cooled.	Describe evidence supporting a claim about what happens when a substance is heated or cooled.	Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.	Predict what changes will happen to new substances when heated or cooled and whether or not those changes can be reversed.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

Students will ...

demonstrate an understanding of structure, properties, and interactions of matter (PS1) and explain and predict interactions between objects and within systems of objects (PS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. (3-PS2-1)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Participate in an investigation to make observations about an object's motion.	Participate in an investigation to identify the effects of forces on the motion of an object.	Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.	Plan and conduct an investigation to explain how various balanced and unbalanced forces affect the motion of an object.

PERFORMANCE INDICATOR

Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion. (3-PS2-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about the motion of an object over time.	Make observations and/or measurements to identify patterns in an object's motion over time.	Use observations and/or measurements to provide evidence that a pattern can be used to predict future motion.	Use observations and/or measurements as evidence to explain how patterns can be used to predict future motion.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. (3-PS2-3)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about two objects not in contact with each other interacting through electric or magnetic forces.	Ask questions that arise from observations of two objects not in contact with each other interacting through electric or magnetic forces.	Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.	Ask questions using scientific vocabulary to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

PERFORMANCE INDICATOR

Define a simple design problem that can be solved by applying scientific ideas about magnets.* (3-PS2-4)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about magnets.	Identify the criteria and constraints of a simple design problem that could be solved using magnets.	Define a simple design problem that can be solved by applying scientific ideas about magnets.	Elaborate on a simple design problem, explaining the criteria and constraints and how and why magnets work to solve this design problem.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Develop a model that illustrates matter is made up of particles too small to be seen and then describe how this accounts for observable phenomenon. (5-PS-1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify relevant components of a model that illustrates that matter is made up of particles too small to be seen.	Describe the components of a model that illustrates that matter is made up of particles too small to be seen.	Develop a model that illustrates matter is made up of particles too small to be seen and then describe how this accounts for observable phenomenon.	Evaluate the strengths and limitations of a model that shows that matter is made of particles too small to be seen.

PERFORMANCE INDICATOR

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. (5-PS1-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about the weight of substances before and after they are heated, cooled, and/or mixed.	Measure and graph the total weight of substances before and after they are heated, cooled, and/or mixed.	Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.	Make a hypothesis based on evidence about what will happen to the total weight of matter when heating, cooling, or mixing new substances.

$\sqrt{\begin{array}{c} e^{-1} & 100^{\circ}c \\ \beta & 4 \\$

PERFORMANCE INDICATOR

Make observations and measurements to identify materials based on their properties. (5-PS1-3)

AI	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify properties of materials.	Make observations and measurements about properties of materials.	Make observations and measurements to identify materials based on their properties.	Use evidence from observations and measurements to identify unknown materials.

PERFORMANCE INDICATOR

Conduct an investigation to determine whether the mixing of two or more substances results in new substances. (5-PS1-4)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	By participating in an investigation, describe the data to be collected about the properties of substances before and after mixing.	Collect data on the quantitative and qualitative properties of substances before and after mixing.	Conduct an investigation to determine whether the mixing of two or more substances results in new substances.	Make a hypothesis based on evidence from an investigation about whether mixing two or more unknown substances will result in new substances.

PERFORMANCE INDICATOR

Support an argument that the gravitational force exerted by Earth on objects is directed down. (5-PS2-1)

AIIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify interactions between the Earth and other objects.	Describe evidence that supports an argument that the gravitational force exerted by Earth on objects is directed down.	Support an argument that the gravitational force exerted by Earth on objects is directed down.	Predict what will happen to various objects based on the argument that the gravitational force exerted by Earth on objects is directed down.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

β √ Δ p⁺ √

e⁻ √ 100°C √ β √ Δ p⁺ √

Students will ...

demonstrate an understanding of structure, properties, and interactions of matter (PS1) and explain and predict interactions between objects and within systems of objects (PS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Develop models to describe the atomic composition of simple molecules and extended structures. (MS-PS1-1)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify relevant components of a model that would illustrate the atomic composition of simple molecules.	Describe relationships between the components of a model that would illustrate the atomic composition of simple molecules.	Develop models to describe the atomic composition of simple molecules and extended structures.	Apply models to predict behavior of simple molecules and extended structures.

B

PERFORMANCE INDICATOR

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. (MS-PS1-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the properties of substances before and after the substances interact.	Describe patterns and changes in the properties of substances before and after they interact.	Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.	Justify whether or not a chemical reaction has occurred by selecting the most relevant evidence from data on the properties of substances before and after the substances interact.

PERFORMANCE INDICATOR

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. (MS-PS1-3)

AIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify synthetic materials used in daily life.	Gather information about the origin of synthetic materials.	Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.	Justify the decision to use or not use synthetic materials for various products based on their origins and impact on society.

PERFORMANCE INDICATOR

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. (MS-PS1-4)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify relevant components of a model that would illustrate particle motion.	Describe relationships between components of a model of particle motion when thermal energy is added or removed.	Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.	Apply a model to draw conclusions about what will happen to particle motion, temperature, and state of a pure substance in a larger system when thermal energy is added or removed.

 e⁻ √ 100°C √ β √ Δ p⁺ √

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. (MS-PS1-5)

AIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify components of a model that would illustrate the law of conservation of mass.	Describe the relationship between components of a model that would illustrate the law of conservation of mass.	Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.	Apply a model to predict what will happen to mass in a variety of chemical reactions.

PERFORMANCE INDICATOR

Construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes using the design process.* (MS-PS1-6)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components needed for a device that either releases or absorbs thermal energy by chemical processes.	Construct and test a device that either releases or absorbs thermal energy by chemical processes using the design process.	Construct , test , and modify a device that either releases or absorbs thermal energy by chemical processes using the design process.	Evaluate the effectiveness of the device that either releases or absorbs thermal energy by chemical processes and suggest additional modifications.

$\sqrt{\begin{array}{c} e^{-1} & 100^{\circ}c \\ \beta & \Delta & p^{+1} \end{array} }$

PERFORMANCE INDICATOR

Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.* (MS-PS2-1)

AIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Explain Newton's Third Law.	Identify criteria and constraints of a design solution to a problem involving the motion of two colliding objects.	Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.	Evaluate the design based on the criteria and constraints identified.

PERFORMANCE INDICATOR

Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. (MS-PS2-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Explain Newton's First and Second Laws.	Participate in an investigation and identify evidence of each of the forces acting on an object in motion.	Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.	Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object in order to explain Newton's First and Second Laws.

PERFORMANCE INDICATOR

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. (MS-PS2-3)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about the strength of electric and magnetic forces.	Ask questions about the strength of electric and magnetic forces based on observations and given data.	Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.	Ask questions about data using scientific vocabulary to explain the factors that affect the strength of electric and magnetic forces.

PERFORMANCE INDICATOR

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. (MS-PS2-4)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify evidence to support arguments that gravitational interactions are attractive.	Describe evidence to support arguments that gravitational interactions are attractive and depend on the masses of interacting objects.	Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.	Predict the interactions that are likely to occur between two objects based on the evidence-based argument that gravitational interactions are attractive and depend on the masses of interacting objects.

β √ Δ p⁺ √

PERFORMANCE INDICATOR

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. (MS-PS2-5)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Make observations about interactions between objects exerting forces on each other even though the objects are not in contact.	Conduct an investigation to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact and explain the experimental design.	Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.	Apply evidence from an investigation to predict interactions between objects exerting forces on each other even though the objects are not in contact.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

e⁻ √ 100°C √ β √ Δ p⁺ √

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of structure, properties, and interactions of matter (PS1) and explain and predict interactions between objects and within systems of objects (PS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. (HS-PS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the features of the periodic table that illustrate properties of elements.	Describe the patterns of properties of elements that contribute to the organization of the periodic table.	Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.	Compare relative properties of elements to make predictions about the interactions between elements on the periodic table based on the patterns of electrons in the outermost energy level of atoms.

PERFORMANCE INDICATOR

Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. (HS-PS1-2)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify evidence that shows the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	Construct an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	Evaluate the strengths and shortcomings of the explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. (HS-PS1-3)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify and describe the evidence needed to compare the structure of substances at the bulk scale.	Participate in an investigation to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.	Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.	Evaluate the strengths and limitations of the investigation to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.

PERFORMANCE INDICATOR

Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. (HS-PS1-4)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components of a model that illustrates the release or absorption of energy from a chemical reaction.	Describe the relationship between the components of a model that illustrates the release or absorption of energy from a chemical reaction.	Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.	Apply a model to predict the release or absorption of energy from a variety of chemical reactions.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. (HS-PS1-5)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Collect evidence about the rate at which a reaction occurs when the temperature and concentration are varied.	Describe the evidence that shows the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.	Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.	Evaluate the strengths and limitations of the explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.

PERFORMANCE INDICATOR

Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium. (HS-PS1-6)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components of a chemical system.	Describe the criteria and constraints of the design of a chemical system.	Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.	Evaluate the reasoning which supports the design of a chemical system.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. (HS-PS1-7)

RIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify products and reactants in a chemical reaction equation.	Balance simple chemical equations.	Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	Compare multiple mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

PERFORMANCE INDICATOR

Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay. (HS-PS1-8)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify components of models that illustrate the changes in the composition of the nucleus of the atom and the energy released during fission, fusion, or radioactive decay.	Describe relationships between components of models that illustrate the changes in the composition of the nucleus of the atom and the energy released during fission, fusion, and/or radioactive decay.	Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.	Apply models to compare the relative energy released during the processes of fission, fusion, and radioactive decay.

PERFORMANCE INDICATOR

Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. (HS-PS2-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Organize data to identify the components of Newton's second law of motion.	Identify relationships within data sets to describe the relationships among the net force on a macroscopic object, its mass, and its acceleration.	Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.	Evaluate the strengths and limitations of the data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. (HS-PS2-2)

IIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify objects in a system and the respective momentum of each object.	Describe how the total momentum of a system of objects can be conserved when there is no net force on the system.	Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.	Evaluate the strengths and limitations of the mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

 e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

Apply scientific and engineering ideas to design, evaluate and refine a device that minimizes the force on a macroscopic object during a collision.* (HS-PS2-3)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the criteria and constraints of a device that minimizes the force on a macroscopic object during a collision.	Apply scientific and engineering ideas to design a device that minimizes the force on a macroscopic object during a collision.	Apply scientific and engineering ideas to design, evaluate and refine a device that minimizes the force on a macroscopic object during a collision.	Evaluate the effectiveness of the refinements of a device that minimizes the force on a macroscopic object during a collision based on the criteria and constraints.

PERFORMANCE INDICATOR

Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects. (HS-PS2-4)

۷	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Describe Newton's Law of Gravitation and Coulomb's Law.	Compare Newton's Law of Gravitation and Coulomb's Law to describe gravitational and electrostatic forces between objects.	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.	Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to justify predictions about the gravitational and electrostatic forces between macroscopic objects.

β √ Δ p⁺ √

PERFORMANCE INDICATOR

Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. (HS-PS2-5)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Describe the phenomenon of electric currents and magnetic fields.	Participate in an investigation to collect evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.	Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.	Evaluate the strengths and limitations of the investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

PERFORMANCE INDICATOR

Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.* (HS-PS2-6)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Describe how specific	Compare materials at the	Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.	Evaluate the effectiveness and relevance
properties of familiar	molecular level to determine		of scientific and technical information
materials at the molecular	how specific properties create		about why the molecular-level structure is
level contribute to their	attractive and repulsive forces		important in the functioning of designed
function.	that contribute to their function.		materials.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

e⁻ √ 100°C √ β √ Δ p⁺ √

SCORING CRITERIA

β

e⁻

V

8

Ν

SCIENCE

e

PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4)

GRADE K-2

 \checkmark

100°C

V

β

Ν

 $\sqrt{}$

 $\sqrt{}$

β

Δ

e⁻

p⁺

Ν

p⁺

β

 \checkmark

1 (

GRADE 3-5

GRADE 6-8

GRADE 9-12

RIDE Rhode Island Department of Education

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | K-2

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the characteristics and properties of energy (PS3) and explain how waves are used to transfer energy and information (PS4) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Make observations to determine the effect of sunlight on Earth's surface. (K-PS3-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Ask and answer questions about the effect of sunlight on a known surface.	Make observations about the temperature of materials placed in sunlight and in shade.	Make observations to determine the effect of sunlight on Earth's surface.	Use observations to hypothesize why sunlight affects the Earth's surface.

PERFORMANCE INDICATOR

Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* (K-PS3-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify structures that reduce the warming effect of sunlight on an area.	Use tools and materials to identify features and a structures that reduce the warming effect of sunlight on an area.	Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.	Explain how the structure will reduce the warming effect of sunlight on an area.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | K-2 (CONTINUED)

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. (1-PS4-1)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Make observations about vibrating materials that make sound and that sound can make materials vibrate.	Participate in an investigation to identify evidence that vibrating materials can make sound and that sound can make materials vibrate.	Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.	Using evidence from the investigation, predict what will happen to materials interacting with sound waves.

PERFORMANCE INDICATOR

Make observations to construct an evidence-based account that objects can be seen only when illuminated. (1-PS4-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about what happens to objects in light and in darkness.	Make observations to explain what happens to objects that can be seen only when illuminated.	Make observations to construct an evidence-based account that objects can be seen only when illuminated.	Make observations to construct an evidence-based account of how and why objects can be seen only when illuminated.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | K-2 (CONTINUED)

$\sqrt{\begin{array}{c} e^{-1} & 100^{\circ}c \\ \beta & 4 \end{array} }$

PERFORMANCE INDICATOR

Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light. (1-PS4-3)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about what happens when different materials are put in the path of a beam of light.	Participate in an investigation to identify evidence that shows the effect of placing objects made with different materials in the path of a beam of light.	Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light.	Using the observations, hypothesize why the path of a beam of light is affected by different materials.

PERFORMANCE INDICATOR

Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.* (1-PS4-4)

AIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify devices that use light or sound to solve the problem of communicating over a distance.	Use tools and materials to identify the features and structure of a device that uses light or sound to solve the problem of communicating over a distance.	Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.	Explain how the designed device uses light or sound to solve the problem of communicating over a distance.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 3-5

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the characteristics and properties of energy (PS3) and explain how waves are used to transfer energy and information (PS4) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Use evidence to construct an explanation relating the speed of an object to the energy of that object. (4-PS3-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about the speed of an object.	Describe how the speed of an object relates to the energy of that object.	Use evidence to construct an explanation relating the speed of an object to the energy of that object.	Apply an evidence-based explanation to predict changes in speed or energy of an object.

B

PERFORMANCE INDICATOR

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. (4-PS3-2)

IIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about sound, light, heat, and electric currents.	Make observations to identify how energy can be transferred from place to place.	Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.	Using evidence from observations, hypothesize how energy can be transferred from place to place.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) 3-5 (CONTINUED)

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Ask questions and predict outcomes about the changes in energy that occur when objects collide. (4-PS3-3)

AI	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the observable results of objects colliding.	Ask questions to gather information about the changes in energy that occur when objects collide.	Ask questions and predict outcomes about the changes in energy that occur when objects collide.	Predict outcomes, using new examples, about the changes in energy that occur when objects collide.

PERFORMANCE INDICATOR

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* (4-PS3-4)

AII	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify a device that	Apply scientific ideas to design	Apply scientific ideas to design , test ,	Evaluate the process of designing, testing,
	converts energy from one	and test a device that converts	and refine a device that converts	and refining a device that converts energy
	form to another.	energy from one form to another.	energy from one form to another.	from one form to another.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 3-5 (CONTINUED)

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. (4-PS4-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the relevant component parts of waves.	Describe relationships between component parts of waves.	Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.	Compare wave models to describe relationships, patterns, strengths and limitations of models in representing wave motion.

PERFORMANCE INDICATOR

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. (4-PS4-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe what happens to the path of light when blocked or reflected.	Describe the relationship between components of a model that illustrates light reflecting from objects and entering the eye.	Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.	Apply the model to make predictions about the way objects will be seen using light sources of varying intensity and direction.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) 3-5 (CONTINUED)

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Generate and compare multiple solutions that use patterns to transfer information.* (4-PS4-3)

NA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Generate solutions that use patterns to transfer information.	Generate and describe multiple solutions that use patterns to transfer information.	Generate and compare multiple solutions that use patterns to transfer information.	Evaluate the effectiveness of generated solutions in how they use patterns to transfer information.

PERFORMANCE INDICATOR

Use models to describe that energy in animals' food (used for bodily function) was once energy from the sun. (5-PS3-1)

N	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
CRI'	Identify the components that are relevant to a model that connects energy in animals' food to energy from the sun.	Describe the relationship between energy in animals' food and energy from the sun.	Use models to describe that energy in animals' food (used for bodily function) was once energy from the sun.	Evaluate various models and explain which is the most effective at showing that energy in animals' food was once energy from the sun.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 6-8

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the characteristics and properties of energy (PS3) and explain how waves are used to transfer energy and information (PS4) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. (MS-PS3-1)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Organize data about kinetic energy and the mass and speed on an object.	Construct graphical displays of data to represent the relationships of kinetic energy to the mass of an object and to the speed of an object.	Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.	Evaluate the effectiveness of the graphical display to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

PERFORMANCE INDICATOR

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. (MS-PS3-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components of a model illustrating the relationship between arrangement of objects and potential energy.	Describe the relationship between the components of the model illustrating the relationship between arrangement of objects and potential energy.	Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.	Apply a model to determine the relative amounts of potential energy stored in a system when distances between objects in the system change.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 6-8 (CONTINUED)

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* (MS-PS3-3)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Identify criteria and constraints for a design of a device that either minimizes or maximizes thermal energy transfer.	Apply scientific principles to design and construct a device that either minimizes or maximizes thermal energy transfer.	Apply scientific principles to design , construct , and test a device that either minimizes or maximizes thermal energy transfer.	Evaluate the strengths and limitations of the device design against the criteria and constraints.

PERFORMANCE INDICATOR

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. (MS-PS3-4)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Make observations about the relationship between kinetic energy and temperature.	Participate in an investigation to identify patterns in relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.	Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.	Plan an investigation to justify claims regarding the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 6-8 (CONTINUED)

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. (MS-PS3-5)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify evidence to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.	Describe evidence to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.	Construct, use , and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.	Apply evidence-based arguments to make predictions about changes in kinetic energy of an object and energy transfer from one object to another.

PERFORMANCE INDICATOR

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. (MS-PS4-1)

AIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the characteristics of a mathematical wave model.	Identify how the wave model characteristics relate to physical observations.	-	Use the mathematical model to predict the change in energy of the wave if any one of the parameters of the wave is changed.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 6-8 (CONTINUED)

v e⁻ √ 100°C √ β √ Δ **p**⁺ √

PERFORMANCE INDICATOR

Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. (MS-PS4-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components of a model that illustrates wave behavior through various materials.	Describe the relationship between the components of a model that illustrates wave behavior through various materials.	Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.	Apply a model to predict how waves will be reflected, absorbed, or transmitted in real world situations.

PERFORMANCE INDICATOR

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (MS-PS4-3)

۷	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Use provided materials to make observations about the differences between digitized and analog signals.	Identify qualitative scientific and technical information relevant to the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.	Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.	Evaluate the effectiveness of the evidence to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 9-12

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the characteristics and properties of energy (PS3) and explain how waves are used to transfer energy and information (PS4) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. (HS-PS3-1)

•	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the relevant components of a system where energy flows in and out.	Describe the relationship between the components of a system where energy flows in and out.	Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.	Apply the model to calculate and compare the change in energy in a variety of systems.

PERFORMANCE INDICATOR

Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as either motions of particles or energy stored in fields. (HS-PS3-2)

∢	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the components of a model that illustrates energy at the macroscopic scale.	Describe the relationship between components of a model that illustrates that energy at the macroscopic scale can be accounted for as either motions of particles or energy stored in fields.	Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as either motions of particles or energy stored in fields.	Evaluate the strengths and limitations of models that illustrate that energy at the macroscopic scale can be accounted for as either motions of particles or energy stored in fields.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 9-12 (CONTINUED)

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Design, build and refine a device that works within given constraints to convert one form of energy into another form of energy.* (HS-PS3-3)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe the conversion of energy from one form to another.	Design and build a device that works within given constraints to convert one form of energy into another form of energy.	Design , build , and refine a device that works within given constraints to convert one form of energy into another form of energy.	Evaluate the strengths and limitations of the refinements of a device to convert one form of energy into another form of energy within given constraints.

PERFORMANCE INDICATOR

Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). (HS-PS3-4)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the evidence needed to show that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).	Plan an investigation to collect evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).	Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).	Evaluate the strengths and limitations of the investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. (HS-PS3-5)

-	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the components of a model of two objects interacting through electric or magnetic fields.	Describe the interaction and forces between two objects interacting through electric or magnetic fields.	Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.	Apply a model to make predictions about interactions of two or more objects through electric or magnetic fields.

PERFORMANCE INDICATOR

Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. (HS-PS4-1)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the relevant components of mathematical representations regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.	Describe mathematical relationships among the frequency, wavelength, and speed of waves traveling in various media.	Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.	Use mathematical representations to evaluate claims regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 9-12 (CONTINUED)

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. (HS-PS4-3)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Describe electromagnetic radiation as a wave model and a particle model.	Explain how evidence and reasoning supports the claim that electromagnetic radiation can be described either by a wave model or a particle model.	Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.	Apply the wave or particle model to a new scenario and justify its usefulness

PERFORMANCE INDICATOR

Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter. (HS-PS4-4)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.	Analyze the claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.	Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.	Evaluate and compare the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

SCORING CRITERIA SCIENCE | PHYSICAL SCIENCES: ENERGY, WAVES, AND ELECTROMAGNETIC RADIATION (PS3 + PS4) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.* (HS-PS4-5)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.	Analyze technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.	Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.	Evaluate the effectiveness of the communication of technical information to explain to the audience how technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA

β

e⁻

 \mathbf{V}

8

Ν

SCIENCE

e⁻

LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1)

GRADE K-2

 \checkmark

100°C

V

β

Ν

 $\sqrt{}$

 $\sqrt{}$

β

Δ

e⁻

p⁺

Ν

p⁺

β

 $\sqrt{}$

1 (

GRADE 3-5

GRADE 6-8

GRADE 9-12

RIDE Rhode Island Department of Education

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | K-2

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of how organisms live, grow, respond to their environment, and reproduce using molecular, structural, and chemical biology (LS1) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Use observations to describe patterns of what plants and animals (including humans) need to survive. (K-LS1-1)

AI	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify characteristics of plants and animals.	Use observations to identify the survival needs of plants and animals.	Use observations to describe patterns of what plants and animals (including humans) need to survive.	Use observations to identify similarities in patterns of what plants and animals need to survive.

PERFORMANCE INDICATOR

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.* (1-LS1-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Ask and answer questions about how plants and/or animals use their external parts to help them survive, grow, and meet their needs.	Explain how plants and/or animals use their external parts to help them survive, grow, and meet their needs and how this information can be used to solve a human problem.	Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.	Explain the strengths and/or limitations of the solution to the human problem.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | K-2 (CONTINUED)

PERFORMANCE INDICATOR

Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive. (1-LS1-2)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Identify a behavior of a parent/offspring that help offspring survive.	Read texts and use media to identify behavior of parents and offspring that help offspring survive.	Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.	Describe how patterns of behavior of parents and offspring help offspring survive.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 3-5

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of how organisms live, grow, respond to their environment, and reproduce using molecular, structural, and chemical biology (LS1) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. (3-LS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components of an organism's life cycle.	Describe the relationship between components of organisms' life cycles.	Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.	Evaluate the strengths and limitations of the models to describe that organisms have unique and diverse life cycles.

B

PERFORMANCE INDICATOR

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. (4-LS1-1)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make a claim about the function of internal and external structures of plants and animals.	Describe evidence to support a claim about the function of internal and external structures of plants and animals.	Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.	Predict how internal and external structures of plants and animals may evolve in the future to support survival, growth, behavior, and reproduction.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. (4-LS1-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify relevant components of a model that illustrates how animals receive, process, and respond to information.	Describe the relationships between components of a model that illustrates how animals receive, process, and respond to information.	Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.	Apply your understanding of the model to test interactions involving sensory perception and its influence on animal behavior within a natural system.

PERFORMANCE INDICATOR

Support an argument that plants get the materials they need for growth chiefly from air and water. (5-LS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make a claim about how plants get the materials they need for growth.	Identify evidence about how plants get the materials they need for growth chiefly from air and water.	Support an argument that plants get the materials they need for growth chiefly from air and water.	Apply an evidence-based argument to predict what will happen when changes are made that affect the materials plants need for growth.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 6-8

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of how organisms live, grow, respond to their environment, and reproduce using molecular, structural, and chemical biology (LS1) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. (MS-LS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Recall that living things are made of cells.	Make and record observations to identify evidence that living things are made of either one cell or many different numbers and types of cells.	Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.	Analyze and draw conclusions from an investigation to explain that living things are made of cells; either one cell or many different numbers and types of cells.

B PERFORMANCE INDICATOR

Develop and use a model to identify parts of a cell, describe the function of a cell as a whole, and explain how parts of a cell contribute to the function. (MS-LS1-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify types and structures (organelles) of a cell.	Describe the relationship between cell structures and functions.	Develop and use a model to identify parts of a cell, describe the function of a cell as a whole, and explain how parts of a cell contribute to the function.	Create an analogy that relates cellular structures and functions to another type of system (e.g., school, stadium, mall, family).

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 6-8 (CONTINUED)

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. (MS-LS1-3)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Make a claim about how	Describe evidence of how the	Use argument supported by evidence	Apply an evidence-based argument to predict how a change in cells in one body subsystem could influence another subsystem.
the body is a system of	body is a system of interacting	for how the body is a system of	
interacting subsystems	subsystems composed of groups	interacting subsystems composed of	
composed of groups of cel	of cells.	groups of cells.	

PERFORMANCE INDICATOR

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. (MS-LS1-4)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify characteristic animal behaviors or specialized plant structures that affect the probability of successful reproduction.	Gather evidence relevant to a claim about how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.	Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.	Evaluate the effectiveness of the evidence used to support the explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. (MS-LS1-5)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify environmental and genetic factors that influence the growth of organisms.	Gather relevant evidence for how environmental and genetic factors influence the growth of organisms.	Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.	Evaluate the effectiveness of the scientific explanation to show how environmental and genetic factors influence the growth of organisms.

PERFORMANCE INDICATOR

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. (MS-LS1-6)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify a claim about the	Describe evidence supporting	Construct a scientific explanation	Apply a scientific explanation to predict
	role of photosynthesis in the	a claim about the role of	based on evidence for the role of	how changes in photosynthesis would
	cycling of matter and flow	photosynthesis in the cycling of	photosynthesis in the cycling of matter	result in changes in the cycling of matter
	of energy into and out of	matter and flow of energy into	and flow of energy into and out of	and flow of energy into and out of
	organisms.	and out of organisms.	organisms.	organisms.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. (MS-LS1-7)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify components of a model that describes how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.	Describe the relationship between components of a model that describes how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.	Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.	Evaluate strengths and limitations of models that describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through organisms.

PERFORMANCE INDICATOR

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. (MS-LS1-8)

NA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Gather information about sensory receptors and how they respond to stimuli.	Gather and summarize information about sensory receptors and how they respond to stimuli.	Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.	Communicate synthesized information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 9-12

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will...

demonstrate an understanding of how organisms live, grow, respond to their environment, and reproduce using molecular, structural, and chemical biology (LS1) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells. (HS-LS1-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Describe the location and structure of DNA including genes.	Describe the role of proteins in specialized cells (tissues) and describe genes' function in DNA.	Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.	Critique an explanation of how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.

PERFORMANCE INDICATOR

Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. (HS-LS1-2)

AI	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components of a model that illustrates the systems in multicellular organisms.	Describe the relationships between components of a model that explains the function(s) of the systems in multicellular organisms.	Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	Apply the model to analyze the relationships between the components and how systems interact to provide functions in multicellular organisms.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. (HS-LS1-3)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Describe feedback mechanisms and determine data necessary to conduct an investigation.	Plan an investigation to collect evidence that identifies and measures internal and external environmental conditions.	Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	Predict how feedback mechanisms maintain homeostasis in different living systems.

PERFORMANCE INDICATOR

Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. (HS-LS1-4)

NA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the component parts involved in cellular division.	Describe the process of cellular division (mitosis) and the relationship between the component parts.	Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.	Evaluate the effectiveness of a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 9-12 (CONTINUED)

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. (HS-LS1-5)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Identify components of photosynthesis as it transforms light energy into stored chemical energy.	Describe relationships between components of photosynthesis as it transforms light energy into stored chemical energy.	Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	Evaluate the effectiveness of a model that illustrates how photosynthesis transforms light energy into stored chemical energy.

PERFORMANCE INDICATOR

Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. (HS-LS1-6)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify evidence that shows how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon- based molecules.	Construct an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon- based molecules.	Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.	Evaluate the effectiveness of the revised explanation to show how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: STRUCTURE, FUNCTION, AND INFORMATION PROCESSING (LS1) | 9-12 (CONTINUED)

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. (HS-LS1-7)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify component parts of a model of cellular respiration.	Describe the relationship between the components of a model of cellular respiration.	Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.	Evaluate the strengths and limitations of a model that illustrates that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.

SCORING CRITERIA

β

e⁻

 \checkmark

e

Ν

SCIENCE

e⁻

LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2)

GRADE K-2

 \checkmark

100°C

V

β

Ν

V

 \checkmark

β

Δ

e⁻

p⁺

Ν

p⁺

β

 \mathbf{V}

GRADE 3-5

GRADE 6-8

<u>GRADE 9-12</u>

RIDE Rhode Island Department of Education

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | K-2

V e⁻ √ 100°C √ β √ Δ p⁺ √

Students will ...

demonstrate an understanding of the characteristics, functions, and behavioral interactions within an ecosystem (LS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Plan and conduct an investigation to determine if plants need sunlight and water to grow. (2-LS2-1)

P	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Participate in an investigation to make observations about the relationship between plants and sunlight/water.	Participate in an investigation to identify evidence to show if plants need sunlight and water to grow.	Plan and conduct an investigation to determine if plants need sunlight and water to grow.	Plan and conduct an investigation to hypothesize why plants need sunlight and water to grow.

PERFORMANCE INDICATOR

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.* (2-LS2-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify relevant structures of plants and animals that aid in seed dispersal or plant pollination.	Describe how structures of plants and animals aid in seed dispersal or plant pollination.	Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.	Suggest improvements to the model so that it would better mimic the natural world.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | 3-5

V e⁻ √ 100°C √ β √ Δ p⁺ √

Students will ...

demonstrate an understanding of the characteristics, functions, and behavioral interactions within an ecosystem (LS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Construct an argument that some animals form groups that help members survive. (3-LS2-1)

	DEVELOPING	PROFICIENT	EXPANDING
Make a claim about how some animals form groups.	Describe relevant evidence to support the argument that some animals form groups that help members survive.	Construct an argument that some animals form groups that help members survive.	Predict how various ways that animals group themselves can impact rates of survival.

PERFORMANCE INDICATOR

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. (5-LS2-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the components of a model that would describe the movement of matter.	Describe the relationships between components in a model that are relevant for describing the movement of matter among plants, animals, decomposers, and the environment.	Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.	Apply the model to make predictions about how changes in the movement of matter would influence plants, animals, decomposers, and the environment.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | 6-8

e⁻ √ 100°C √ β √ Δ p⁺ √

Students will ...

demonstrate an understanding of the characteristics, functions, and behavioral interactions within an ecosystem (LS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. (MS-LS2-1)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	Describe the given data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.	Use the analysis and interpretation to explain the importance of resource availability on organisms and populations of organisms in an ecosystem.

PERFORMANCE INDICATOR

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. (MS-LS2-2)

۲	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify evidence of patterns of interactions among organisms across multiple ecosystems.	Explain the patterns of interactions among organisms across multiple ecosystems.	Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.	Evaluate the effectiveness of the explanation that predicts patterns of interactions among organisms across multiple ecosystems.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. (MS-LS2-3)

-	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the components of a model that describes the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	Describe the relationship between the components of a model that describes the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	Apply a model to make predictions about how variations in the cycling of matter and flow of energy affect living and nonliving parts of an ecosystem.

PERFORMANCE INDICATOR

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. (MS-LS2-4)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make a claim about how changes to physical or biological components of an ecosystem affect populations.	Describe empirical evidence that supports a claim that changes to physical or biological components of an ecosystem affect populations	Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.	Predict how changes to physical or biological components of an ecosystem may affect populations in the future.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR Evaluate competing design solutions f

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.* (MS-LS2-5)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe the given design solutions and the problem of maintaining biodiversity and ecosystem services.	Identify criteria and constraints of given design solutions for maintaining biodiversity and ecosystem services.	Evaluate competing design solutions for maintaining biodiversity and ecosystem services.	Use evaluation of competing design solutions to suggest improvements to better maintain biodiversity and ecosystem services.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER **AND ENERGY IN ORGANISMS AND** ECOSYSTEMS (LS2) | 9-12

e⁻ √ 100°C √ β √ Δ p⁺ √

Students will...

demonstrate an understanding of the characteristics, functions, and behavioral interactions within an ecosystem (LS2) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

A Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. (HS-LS2-1)

V	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
t CRIT	Describe the relevant factors that affect carrying capacity of ecosystems at different scales.	Organize information into an explanation of factors that affect carrying capacity of ecosystems at different scales.	Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.	Critique the effectiveness of the mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.

PERFORMANCE INDICATOR

Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. (HS-LS2-2)

۲	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Describe the factors affecting biodiversity and populations in ecosystems of different scales.	Organize information to support explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	Evaluate the effectiveness of the mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. (HS-LS2-3)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	Construct an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	Evaluate the effectiveness of the revised explanation for the cycling of matter and flow of energy in aerobic and anaerobic conditions.

PERFORMANCE INDICATOR

Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. (HS-LS2-4)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe the cycling of matter and flow of energy among organisms in an ecosystem.	Create mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	Evaluate the effectiveness of the mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. (HS-LS2-5)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify components of a model illustrating the processes of photosynthesis and cellular respiration.	Describe the relationship between photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	Apply a model to predict how changes in photosynthesis and cellular respiration affect the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

PERFORMANCE INDICATOR

Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. (HS-LS2-6)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	Explain how evidence and reasoning support the claims that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	Evaluate the claims, evidence and/ or reasoning for bias to improve the argument that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS (LS2) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Design, evaluate and refine a solution for reducing the impacts of human activity on the environment and biodiversity.* (HS-LS2-7)

-	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the criteria and constraints for a design solution for reducing the impacts of human activity on the environment and biodiversity.	Design a solution for reducing the impacts of human activity on the environment and biodiversity.	Design , evaluate and refine a solution for reducing the impacts of human activity on the environment and biodiversity.	Evaluate the effectiveness of the refined design solution for reducing the impacts of human activity on the environment and biodiversity based on the criteria and constraints.

PERFORMANCE INDICATOR

Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce. (HS-LS2-8)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify evidence for the role of group behavior on individual and species' chances to survive and reproduce.	Explain the evidence for the role of group behavior on individual and species' chances to survive and reproduce and identify any additional evidence.	Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.	Predict the effect of a change in group behavior and how it would impact chances of the individual or species to survive and reproduce.

SCORING CRITERIA

β

e⁻

V

e

Ν

SCIENCE

e

LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4)

GRADE K-2

 \checkmark

100°C

 \mathbf{V}

β

Ν

V

 $\sqrt{}$

β

Δ

e⁻

p⁺

Ν

p⁺

β

 $\sqrt{}$

GRADE 3-5

GRADE 6-8

GRADE 9-12

RIDE Rhode Island Department of Education

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | K-2

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of genetics, variation of traits (LS3), adaptation, natural selection, and biodiversity (LS4) through the integration of scientific and engineering practices, and crosscutting concepts.

PERFORMANCE INDICATOR

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. (1-LS3-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations regarding traits of parents and offspring.	Gather evidence that young plants and animals are like, but not exactly like, their parents.	Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.	Generalize observations to make predictions about other patterns regarding traits of parents and offspring.

PERFORMANCE INDICATOR

Make observations of plants and animals to compare the diversity of life in different habitats. (2-LS4-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify habitats where plants and animals can live.	Make observations about characteristics of plants and animals in different habitats.	Make observations of plants and animals to compare the diversity of life in different habitats.	Generalize observations to make predictions about other patterns regarding plants and animals in various habitats.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 3-5

$\sqrt{\begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{\beta} \\ \beta \sqrt{\Delta} p^{+} \sqrt{\beta} \end{array} }$

Students will ...

demonstrate an understanding of genetics, variation of traits (LS3), adaptation, natural selection, and biodiversity (LS4) through the integration of scientific and engineering practices, and crosscutting concepts.

PERFORMANCE INDICATOR

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. (3-LS3-1)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify inherited traits of similar organisms.	Gather relevant evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.	Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.	Use data to hypothesize and draw conclusions about inherited traits of similar organisms.

PERFORMANCE INDICATOR

Use evidence to support the explanation that traits can be influenced by the environment. (3-LS3-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify traits that can be influenced by the environment.	Select relevant evidence that supports the explanation that traits can be influenced by the environment.	Use evidence to support the explanation that traits can be influenced by the environment.	Evaluate the effectiveness of your chain of reasoning by critiquing the relevancy or sufficiency of your evidence.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. (3-LS4-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify data from fossils to provide evidence of the organisms and the environments in which they lived long ago.	Describe the relationships in the data from fossils to provide evidence of the organisms and the environments in which they lived long ago.	Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.	Compare fossil evidence to make predictions about the differing environments in which they lived long ago.

PERFORMANCE INDICATOR

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)

-	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify a claim about how the variations in characteristics among individuals of the same species may provide advantages.	Describe evidence that explains how the variations in characteristics among individuals of the same species may provide advantages.	Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.	Evaluate the effectiveness of your chain of reasoning by critiquing the relevancy or sufficiency of your evidence.

 e⁻ √ 100°C √ β √ Δ p⁺ √

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. (3-LS4-3)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make a claim about how a specific habitat allows some organisms to thrive.	Describe evidence that supports a claim about how a specific habitat allows some organisms to thrive while others cannot survive at all.	Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.	Predict how future changes in a habitat will impact how well organisms within that habitat can survive.

PERFORMANCE INDICATOR

Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* (3-LS4-4)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify examples of environmental changes that have led to a change in the types of plants and animals that live there.	Describe specific evidence of solutions to a problem caused when the environment changes and the types of plants and animals that live there change.	Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.	Critique your claim against others to evaluate the effectiveness of your criteria and evidence.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 6-8

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of genetics, variation of traits (LS3), adaptation, natural selection, and biodiversity (LS4) through the integration of scientific and engineering practices, and crosscutting concepts.

PERFORMANCE INDICATOR

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. (MS-LS3-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify how mutations can cause/create harmful, beneficial, and/or neutral changes to an organism.	Describe the relationship between genetic information and the structure and function of the organism.	Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.	Apply models to make predictions about how specific changes at the molecular level may affect proteins and result in either harmful, beneficial or neutral effects to the structure and function of the organism.

PERFORMANCE INDICATOR

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. (MS-LS3-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the relevant components of a model of reproduction.	Describe the relationship between components of a model of reproduction.	Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.	Critique various models and suggest improvements to more accurately describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 6-8 (CONTINUED)

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. (MS-LS4-1)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Organize given data to explain patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.	Analyze the given data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.	Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.	Synthesize information from analysis and interpretation of data to hypothesize and draw conclusions about how natural laws will operate in the future.

PERFORMANCE INDICATOR

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. (MS-LS4-2)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify evidence for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.	Describe the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.	Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.	Evaluate the effectiveness of your explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR Analyze displays of pictorial data to co

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. (MS-LS4-3)

•	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify patterns in pictorial data of similarities in the embryological development across multiple species.	Explain patterns in pictorial data of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.	Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.	Analyze displays of pictorial data to hypothesize or draw conclusions about embryological development across multiple species and why relationships are not evident in the fully formed anatomy.

PERFORMANCE INDICATOR

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment. (MS-LS4-4)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify and organize given evidence about how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.	Describe how evidence relates to genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.	Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.	Evaluate the effectiveness of the explanation to describe how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. (MS-LS4-5)

۷	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Gather information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.	Gather and summarize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.	Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.	Evaluate the quality of information synthesized about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

PERFORMANCE INDICATOR

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. (MS-LS4-6)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify relevant components from given mathematical representations to show how natural selection may lead to increases and decreases of specific traits in populations over time.	Use mathematical representations to identify relationships in the data about how natural selection may lead to increases and decreases of specific traits in populations over time.	Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.	Use mathematical representations to critique the explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

e⁻ √ 100°C √ β √ Δ p⁺ √

SCORING CRITERIA SCIENCE | LIFE SCIENCES: HEREDITARY, NATURAL SELECTION AND BIODIVERSITY OF ORGANISMS (LS3 + LS4) | 9-12

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of genetics, variation of traits (LS3), adaptation, natural selection, and biodiversity (LS4) through the integration of scientific and engineering practices, and crosscutting concepts.

PERFORMANCE INDICATOR

Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. (HS-LS3-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe the basic structure of DNA and identify components of empirically testable questions.	Develop questions about DNA structure and function.	Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	Develop investigations to test questions about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

PERFORMANCE INDICATOR

Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. (HS-LS3-2)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Describe evidence that supports claims about inheritable genetic variations.	Identify strengths and weaknesses of the evidence to support the claim that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	Evaluate the claim and evidence for bias.

PERFORMANCE INDICATOR

Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. (HS-LS3-3)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Organize the given data by frequency, distribution and variation of expressed traits in a population.	Use appropriate statistical analysis of data to determine the relationship between a trait's occurrence within a population and environmental factors.	Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	Identify variables not considered within the statistical model that could impact real world observations.

PERFORMANCE INDICATOR

Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. (HS-LS4-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	Organize information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	Evaluate the effectiveness of the communication of scientific information to an audience to explain that common ancestry and biological evolution are supported by multiple lines of empirical evidence.

 e⁻ √ 100°C √ β √ Δ p⁺ √

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR Construct an explanation based on ev

Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. (HS-LS4-2)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify how the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	Describe evidence to be used to support an explanation of how the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	Evaluate the effectiveness of the explanation that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. (HS-LS4-3)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Organize and describe the data sets that help support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	Analyze what each data set represents in relation to the idea that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	Evaluate the explanation that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.

PERFORMANCE INDICATOR

Construct an explanation based on evidence for how natural selection leads to adaptation of populations. (HS-LS4-4)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify evidence for how natural selection leads to adaptation of populations.	Describe evidence for how natural selection leads to adaptation of populations.	Construct an explanation based on evidence for how natural selection leads to adaptation of populations.	Evaluate the effectiveness of the explanation for how natural selection leads to adaptation of populations.

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

PERFORMANCE INDICATOR

Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. (HS-LS4-5)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	Explain how the evidence supports claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	Identify additional evidence to further support claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.

PERFORMANCE INDICATOR

Revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* (HS-LS4-6)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the criteria and constraints of a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	Describe the components of a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	Revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	Evaluate the effectiveness of the revised simulation to test a solution to mitigate adverse impacts of human activity on biodiversity based on criteria and constraints.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA

β

e⁻

 \checkmark

e

Ν

SCIENCE

e⁻

EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE (ESS1)

GRADE K-2

 \checkmark

100°C

V

β

Ν

e⁻

Λ

 \mathbf{V}

 \checkmark

β

Δ

p⁺

Ν

p⁺

β

 \checkmark

1 (

GRADE 3-5

GRADE 6-8

GRADE 9-12

RIDE Rhode Island Department of Education

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE (ESS1) | K-2

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the origins, interactions and relationships between and among the Earth, our solar system, and the Universe (ESSI) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Use observations of the sun, moon, and stars to describe patterns that can be predicted. (1-ESS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Organize data in graphical displays from given observations of the sun, moon, and stars.	Identify patterns in observations of the sun, moon, and stars.	Use observations of the sun, moon, and stars to describe patterns that can be predicted.	Compare the predictions with those of peers to determine similarities and difference.

PERFORMANCE INDICATOR

Make observations at different times of year to relate the amount of daylight to the time of year. (1-ESS1-2)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe the data and evidence that will result from the investigation relating the amount of daylight to the time of year.	Describe how observations could reveal the pattern between the amount of daylight and the time of the year.	Make observations at different times of year to relate the amount of daylight to the time of year.	Make predictions about the amount of daylight at specified times during the year.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS1) | K-2 (CONTINUED)

PERFORMANCE INDICATOR

Use information from several sources to provide evidence that Earth events can occur quickly or slowly. (2-ESS1-1)

RIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify examples of things that occur quickly or slowly.	Use sources to gather information about Earth events that can occur quickly or slowly.	Use information from several sources to provide evidence that Earth events can occur quickly or slowly.	Evaluate the effectiveness of your evidence to show that Earth events can occur quickly or slowly.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE (ESS1) | 3-5

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the origins, interactions and relationships between and among the Earth, our solar system, and the Universe (ESS1) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. (4-ESS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations from patterns in rock formation and fossils in rock layers.	Describe specific evidence from observations of patterns in rock formation and fossils in rock layers that connect to changing landscapes.	Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.	Evaluate the effectiveness of your evidence to support an explanation for changes in landscape over time.

PERFORMANCE INDICATOR

Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth. (5-ESS1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify reasons for the sun's brightness compared to that of other stars.	Identify and describe evidence that relates to the sun's brightness compared to other stars.	Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth.	Evaluate the effectiveness of your argument by critiquing the relevancy or sufficiency of your evidence.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE

(ESS1) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. (5-ESS1-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Organize data about the daily and seasonal changes caused by the Earth's rotation and orbit around the sun.	Describe the relationships within and across data sets that relate to the daily and seasonal changes caused by the Earth's rotation and orbit around the sun.	Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.	Using your findings, hypothesize explanations for the patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE (ESS1) | 6-8

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the origins, interactions and relationships between and among the Earth, our solar system, and the Universe (ESS1) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. (MS-ESS1-1)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Identify the relevant components of the Earth- sun-moon system.	Describe the relationship between the relevant components of the Earth-sun-moon system.	Develop and use a model of the Earth- sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.	Apply the Earth-sun-moon model to other planet-moon systems to predict causal events (e.g., seasons on Mars).

PERFORMANCE INDICATOR

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. (MS-ESS1-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the relevant components of a model of galaxies and the solar system.	Describe the relationships and interactions of the relevant components of a model of galaxies and the solar system.	Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.	Evaluate the strengths and limitations of a model that describes the role of gravity in the motions within galaxies and the solar system.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE

(ESS1) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Analyze and interpret data to determine scale properties of objects in the solar system. (MS-ESS1-3)

AIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Explain given data about the properties of objects in the solar system at different scales.	Analyze given data to identify relationships and/or patterns to determine scale properties of objects in the solar system.	Analyze and interpret given data to determine scale properties of objects in the solar system.	Critique the effectiveness of the given data in determining scale properties of objects in the solar system.

PERFORMANCE INDICATOR

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. (MS-ESS1-4)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify evidence from rock strata that relate to the geologic time scale.	Describe how the evidence from rock strata relate to how the geologic time scale is used to organize Earth's 4.6-billion-year- old history.	Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.	Evaluate the effectiveness of the explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE (ESS1) | 9-12

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of the origins, interactions and relationships between and among the Earth, our solar system, and the Universe (ESS1) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation. (HS-ESS1-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the components of a model that would illustrate the life span of the sun and the process by which energy from the sun reaches Earth.	Describe the relationship between the component parts of a model that would illustrate the life span of the sun and the process by which energy from the sun reaches Earth.	Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.	Apply a model to draw conclusions about the life span of stars in comparison to the sun and the role of nuclear fusion in releasing energy in those stars.

B PERFORMANCE INDICATOR Construct an explanation of the Big Big

Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. (HS-ESS1-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.	Describe how astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe helps support the Big Bang theory.	Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.	Evaluate the effectiveness of the astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe to explain the Big Bang theory.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS1) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Communicate scientific ideas about the way stars, over their life cycle, produce elements. (HS-ESS1-3)

AIA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Organize evidence about the way stars, over their life cycle, produce elements.	Describe how evidence shows the way stars, over their life cycle, produce elements.	Communicate scientific ideas about the way stars, over their life cycle, produce elements.	Evaluate the effectiveness of the communication of scientific ideas to an audience about the way stars, over their life cycle, produce elements.

PERFORMANCE INDICATOR

Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. (HS-ESS1-4)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the relevant components of mathematical or computational representations to predict the motion of orbiting objects in the solar system.	Explain the relevant components of mathematical or computational representations to predict the motion of orbiting objects in the solar system.	Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.	Apply predictions regarding the motion of orbiting objects in the solar system to real world situations.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH'S PLACE IN THE UNIVERSE

(ESS1) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. (HS-ESS1-5)

۲	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.	Explain how the evidence shows the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.	Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.	Identify changes to the evidence to better support the idea that the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

PERFORMANCE INDICATOR

Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history. (HS-ESS1-6)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Identify the evidence needed from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.	Describe the evidence from ancient Earth materials, meteorites, and other planetary surfaces as it relates to Earth's formation and early history.	Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.	Evaluate the effectiveness of the scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces in the construction of an account of Earth's formation and early history.

SCORING CRITERIA

β

e⁻

 \mathbf{V}

e

Ν

SCIENCE

e⁻

EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT (ESS2 + ESS3)

GRADE K-2

 \checkmark

100°C

V

β

Ν

V

 \checkmark

β

Δ

e⁻

p⁺

Ν

p⁺

β

GRADE 3-5

GRADE 6-8

GRADE 9-12

RIDE Rhode Island Department of Education

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT (ESS2 + ESS3) | K-2

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of how and why Earth is constantly changing (ESS2) and how Earth's surface processes and human activities affect each other (ESS3) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Use and share observations of local weather conditions to describe patterns over time. (K-ESS2-1)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations to identify local weather conditions.	Use observations of local weather conditions to describe patterns over time.	Use and share observations of local weather conditions to describe patterns over time.	Use observations of patterns in local weather conditions in order to make predictions about future weather conditions.

PERFORMANCE INDICATOR

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. (K-ESS2-2)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations about how plants and animals (including humans) change their environment.	Describe relevant evidence to support that plants and animals (including humans) can change the environment to meet their needs.	Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.	Communicate a scientific, evidence-based argument for how plants and animals (including humans) can change the environment to meet their needs.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | K-2 (CONTINUED)

PERFORMANCE INDICATOR

Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live. (K-ESS3-1)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the survival needs of various plants and animals.	Describe the relationship between the needs of various plants and animals and their environment.	Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live.	Predict the impact of changing environmental characteristics on the ability of a plant or animal to survive.

PERFORMANCE INDICATOR

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.* (K-ESS3-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Ask questions about severe weather events.	Ask questions about the purpose of forecasting severe weather.	Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.	Use information obtained to explain why weather forecasting is needed.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | K-2 (CONTINUED)

PERFORMANCE INDICATOR

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* (K-ESS3-3)

AI	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Explain the impact of humans on the land, water, air, and/or other living things in the local environment.	Explain the impact of humans on the land, water, air, and/or other living things in the local environment and generate solutions that reduce that impact.	Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.	Explain how the solutions will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

F

PERFORMANCE INDICATOR

Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* (2-ESS2-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the features needed for a solution to slow or prevent wind or water from changing the shape of the land.	Describe how multiple solutions are designed to slow or prevent wind or water from changing the shape of the land.	Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.	Identify a solution and explain why it is the most effective design to slow or prevent wind or water from changing the shape of the land.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | K-2 (CONTINUED)

PERFORMANCE INDICATOR

Develop a model to represent the shapes and kinds of land and bodies of water in an area. (2-ESS2-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	List the shapes and kinds of land and bodies of water in an area.	Identify and describe the relationships between similar (land to land) and different (land to water) components.	Develop a model to represent the shapes and kinds of land and bodies of water in an area.	Evaluate the effectiveness of the model to accurately represent the natural world.

PERFORMANCE INDICATOR

Obtain information to identify where water is found on Earth and that it can be solid or liquid. (2-ESS2-3)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify examples of water in liquid and solid form.	Identify sources to obtain information where water is found on Earth.	Obtain information to identify where water is found on Earth and that it can be solid or liquid.	Evaluate the accuracy and usefulness of the sources used to identify where water is found on Earth and that it can be solid or liquid.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT (ESS2 + ESS3) | 3-5

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of how and why Earth is constantly changing (ESS2) and how Earth's surface processes and human activities affect each other (ESS3) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. (3-ESS2-1)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Organize data about typical weather conditions during a particular season.	Represent data in tables and/or graphical displays about typical weather conditions during a particular season.	Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.	Evaluate the accuracy of the tables and graphical displays to describe typical weather conditions expected during a particular season.

PERFORMANCE INDICATOR

Obtain and combine information to describe climates in different regions of the world. (3-ESS2-2)

Z	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe climates in different regions of the world.	Obtain information to describe climates in different regions of the world.	Obtain and combine information to describe climates in different regions of the world.	Evaluate the accuracy and usefulness of the information to describe climate in different regions of the world.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.* (3-ESS3-1)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Explain the impacts of a weather-related hazard.	Explain the design solution that reduces the impacts of a weather-related hazard.	Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.	Explain the claim regarding the merit of a design solution that reduces the impacts of a weather-related hazard.

PERFORMANCE INDICATOR

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. (4-ESS2-1)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make observations of weathering and/or erosion.	Make observations and/or measurements to provide evidence of weathering and/or erosion.	Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.	Use observations and/or measurement to explain the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Analyze and interpret data from maps to describe patterns of Earth's features. (4-ESS2-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Use data from a map to identify patterns of Earth's features.	Interpret data from maps to describe patterns of Earth's features.	Analyze and interpret data from maps to describe patterns of Earth's features.	Using data from maps, hypothesize why patterns exist for the Earth's features.

F

PERFORMANCE INDICATOR

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. (4-ESS3-1)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe that energy and fuels are derived from natural resources.	Obtain information to describe that energy and fuels are derived from natural resources and their uses affect the environment.	Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.	Evaluate the accuracy and usefulness of the information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Generate and compare multiple solutions to reduce the impacts of natural earth processes on humans.* (4-ESS3-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Generate solution(s) related to the impacts of natural earth processes on humans.	Generate and describe multiple solutions to reduce the impacts of natural earth processes on humans based on scientific information.	Generate and compare multiple solutions to reduce the impacts of natural earth processes on humans.	Evaluate the effectiveness of generated solutions to reduce the impacts of natural earth processes on humans.

PERFORMANCE INDICATOR

Develop a model, using an example, to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. (5-ESS2-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the components of a model that would describe the ways different spheres of the Earth interact.	Describe specific interactions between the spheres of the Earth.	Develop a model, using an example, to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.	Apply the model to predict how changes in one sphere of the Earth will cause changes in other spheres.

V e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Describe and graph the amounts and percentages of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. (5-ESS2-2)

AI	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the differences in salt water and fresh water in various reservoirs.	Graph data on the amounts and percentages of salt water and fresh water in various reservoirs to demonstrate the distribution of water on Earth.	Describe and graph the amounts and percentages of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.	Evaluate the accuracy of the graph to describe the amounts and percentages of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT (ESS2 + ESS3) | 6-8

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of how and why Earth is constantly changing (ESS2) and how Earth's surface processes and human activities affect each other (ESS3) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. (MS-ESS2-1)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the relevant components of a model illustrating the cycling of Earth's materials.	Describe the relationships between the components of a model illustrating the cycling of Earth's materials and the flow of energy that drives the process.	Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.	Apply a model to explain the formation of a specific type of Earth material over time.

PERFORMANCE INDICATOR

Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. (MS-ESS2-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify evidence that shows how geoscience processes have changed Earth's surface at varying time and spatial scales.	Describe how evidence shows how geoscience processes have changed Earth's surface at varying time and spatial scales.	Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.	Predict how geoscience processes may change Earth's surface at varying time and spatial scales in the future.

(ESS2 + ESS3) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. (MS-ESS2-3)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Use data to explain the distribution of fossils and rocks, continental shapes, and seafloor structures.	Analyze data on the distribution of fossils and rocks, continental shapes, and seafloor structures to show the past plate motions.	Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.	Use analysis and interpretations to explain the reasons for past plate motions.

PERFORMANCE INDICATOR

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. (MS-ESS2-4)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the relevant components of the water cycle.	Describe the relationships among the components of the water cycle, including energy transfer.	Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.	Apply the model to predict how changes in energy transfer would influence the water cycle and affect living organisms.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. (MS-ESS2-5)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify data related to how the motions and complex interactions of air masses results in changes in weather conditions.	Collect data about how the motions and complex interactions of air masses results in changes in weather conditions.	Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.	Evaluate the effectiveness of the data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

PERFORMANCE INDICATOR

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. (MS-ESS2-6)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the relevant components of a model that would illustrate the unequal heating and rotation of the Earth.	Describe the relationship between the components of the model, including the role of solar energy and temperature, motion of ocean water and air masses, motion of wind and currents, and thermal energy transfer.	Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.	Apply the model to predict how changes in the heating of Earth's surface could cause changes in air and ocean circulation and patterns of climate in the future.

(ESS2 + ESS3) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. (MS-ESS3-1)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify evidence to show how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.	Describe how evidence demonstrates the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.	Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.	Evaluate the effectiveness of the explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

PERFORMANCE INDICATOR

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. (MS-ESS3-2)

۷	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Use data to explain how natural hazards can be used to forecast future catastrophic events and inform the development of technologies to mitigate their effects.	Analyze data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.	Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.	Evaluate the effectiveness of the data on natural disasters to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT (ESS2 + ESS3) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* (MS-ESS3-3)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the scientific principles related to monitoring and minimizing a human impact on the environment.	Use scientific principles to identify criteria and constraints of a design method for monitoring and minimizing a human impact on the environment.	Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.	Evaluate the effectiveness of the design method to monitor and minimize a human impact on the environment using criteria and constraints.

PERFORMANCE INDICATOR

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. (MS-ESS3-4)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Make a claim about how increases in human population and consumption of natural resources impact Earth's systems.	Describe evidence to support a claim about how increases in human population and consumption of natural resources impact Earth's systems.	Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	Predict how increases in human population and per-capita consumption of natural resources will impact Earth's systems in the future.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 6-8 (CONTINUED)

K PERFORMANCE INDICATOR Ask guestions to clarify evidence of the

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. (MS-ESS3-5)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify factors that have caused the rise in global temperatures over the past century.	Ask questions about the factors that have caused the rise in global temperatures over the past century.	Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.	Critique the quality of the questions to clarify the evidence of the factors that have caused the rise in global temperatures over the past century.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT (ESS2 + ESS3) | 9-12

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

demonstrate an understanding of how and why Earth is constantly changing (ESS2) and how Earth's surface processes and human activities affect each other (ESS3) through the integration of scientific and engineering practices and crosscutting concepts.

PERFORMANCE INDICATOR

Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. (HS-ESS2-1)

BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
Identify the component parts of Earth's interior and surface that form continental and ocean-floor features.	Describe the interactions between component parts of Earth's interior and surface that form continental and ocean-floor features.	Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.	Apply a model to predict future continental and ocean-floor features based on Earth's current internal and surface processes.

PERFORMANCE INDICATOR

Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems. (HS-ESS2-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Organize geoscience data needed to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.	Describe relevant geoscience data that support the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.	Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.	Predict how multiple changes to the Earth's surfaces might create feedback that cause changes to other Earth systems.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection. (HS-ESS2-3)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the component parts of Earth's interior involved in the cycling of matter by thermal convection.	Describe the relationship between the component parts of Earth's interior involved in the cycling of matter by thermal convection.	Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.	Evaluate the strengths and limitations of an evidence-based model that describes the cycling of matter by thermal convection.

PERFORMANCE INDICATOR

Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (HS-ESS2-4)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify factors that affect the flow of energy in Earth's systems.	Describe the relationships between the factors that affect the flow of energy in Earth's systems.	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.	Apply a model to predict future changes in climate due to the variations in the flow of energy into and out of Earth's systems.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. (HS-ESS2-5)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the evidence needed in an investigation of the properties of water and its effects on Earth materials and surface processes.	Plan an investigation of the properties of water and its effects on Earth materials and surface processes.	Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.	Propose investigatable questions based on data collected to open other avenues of inquiry.

F

PERFORMANCE INDICATOR

Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. (HS-ESS2-6)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify the component parts of the carbon cycle.	Describe the relationship between various components in the carbon cycle.	Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.	Apply a quantitative model to predict the effects of a disruption to the cycling of carbon among Earth's systems.

(ESS2 + ESS3) 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth. (HS-ESS2-7)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify a claim about the simultaneous coevolution of Earth's systems and life on Earth.	Describe the evidence supporting a claim about the simultaneous coevolution of Earth's systems and life on Earth.	Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.	Predict how current changes to Earth's systems (e.g., climate change, moving of the magnetic poles, holes in the ozone) might affect future systems and life on Earth.

PERFORMANCE INDICATOR

Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. (HS-ESS3-1)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the evidence needed to show how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	Describe the evidence to show how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	Predict how the availability of natural resources, occurrence of natural hazards, and changes in climate will influence human activity in the future.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT (ESS2 + ESS3) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.* (HS-ESS3-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Describe the problem each design solution addresses for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.	Identify criteria and constraints of design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.	Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.	Predict how design solutions might change based on future events or technological advances.

PERFORMANCE INDICATOR

Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations and biodiversity. (HS-ESS3-3)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify factors that affect management of natural resources, the sustainability of human populations, and biodiversity.	Select and organize factors to include in a computational simulation that illustrates the relationships among management of natural resources, the sustainability of human populations and biodiversity.	Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations and biodiversity.	Apply the simulation to analyze current real world problems in the management of natural resources, the sustainability of human populations and biodiversity.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ESS2 + ESS3) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.* (HS-ESS3-4)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the criteria and constraints of the problem in order to select a technological solution that would reduce impacts of human activities on natural systems.	Generate refinements to a possible technological solution that could reduce impacts of human activities on natural systems.	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.	Predict how advances in technological solutions may reduce impacts of human activities on natural systems.

PERFORMANCE INDICATOR

Analyze geoscience data and the results from global climate models to make an evidence based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. (HS-ESS3-5)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify the geoscience data and results from global climate models related to the current rate of global or regional climate change and associated future impacts to Earth systems.	Organize and describe the relationships within the geoscience data and results from global climate models related to the current rate of global or regional climate change and associated future impacts to Earth systems.	Analyze geoscience data and the results from global climate models to make an evidence based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.	Propose and defend ways that the forecast might be used to make changes today that could impact the current rate of global or regional climate change and associated future impacts to Earth systems.

SCORING CRITERIA SCIENCE | EARTH AND SPACE SCIENCES: EARTH SYSTEMS AND HUMAN IMPACT

$\sqrt{\begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{\beta} \\ \beta \sqrt{\Delta} p^{+} \sqrt{2} \end{array} }$

(ESS2 + ESS3) | 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. (HS-ESS3-6)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
	Describe the relevant components of the computational representation of the Earth systems.	Use a computational representation to describe the relationships among at least two Earth systems.	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.	Evaluate the effectiveness of a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA

β

e⁻

 \mathbf{V}

e

Ν

SCIENCE

e

ENGINEERING, TECHNOLOGY, AND APPLICATION OF SCIENCE (ETS1 + ETS2)

GRADE K-2

 \checkmark

100°C

V

β

Ν

 $\sqrt{}$

 $\sqrt{}$

β

Δ

e⁻

p⁺

Ν

p⁺

β

 $\sqrt{}$

GRADE 3-5

GRADE 6-8

GRADE 9-12

M

RIDE Rhode Island Department of Education

SCORING CRITERIA SCIENCE | ENGINEERING, TECHNOLOGY, AND APPLICATION OF SCIENCE (ETS1 + ETS2) | K-2

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

apply the engineering design process to define, develop and optimize a solution to a real world problem and demonstrate understanding of how engineering, technology, science, and society are interconnected (ETS) through the integration of science and engineering practices, crosscutting concepts and disciplinary core ideas.

PERFORMANCE INDICATOR

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. (K-2-ETS-1-1)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Make observations and ask questions about a situation people want to change.	Use observations and questions to gather information about a situation people want to change.	Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.	Ask questions, make observations, and gather information in order to explain a simple problem or situation that people want to change. Suggest new or improved objects or tools as potential solutions.

e⁻ √ 100°C √ β √ Δ p⁺ √

(ETS1 + ETS2) | K-2 (CONTINUED)

PERFORMANCE INDICATOR

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. (K-2-ETS-1-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe the shape of an object.	Develop a simple sketch, drawing, or physical model to solve a given problem.	Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.	Evaluate the effectiveness of the shape of the object to solve a given problem.

PERFORMANCE INDICATOR

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs. (K-2-ETS-1-3)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Using data, identify the strengths within the tests of two objects designed to solve the same problem.	Explain the data from the tests of two objects designed to solve the same problem including the strengths of how each performs.	Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.	Using evidence from the data, construct an argument for which object best solved the problem.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | ENGINEERING, TECHNOLOGY, AND APPLICATION OF SCIENCE (ETS1 + ETS2) | 3-5

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

apply the engineering design process to define, develop and optimize a solution to a real world problem and demonstrate understanding of how engineering, technology, science, and society are interconnected (ETS) through the integration of science and engineering practices, crosscutting concepts and disciplinary core ideas.

PERFORMANCE INDICATOR

Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time and cost. (3-5-ETS-1-1)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify a need or want.	Identify a need or want that includes specified criteria for success and constraints on materials, time and cost.	Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time and cost.	Define a simple design problem, including an explanation of a need or want that includes specified criteria for success and constraints on materials, time and cost.

(ETS1 + ETS2) 3-5 (CONTINUED)

PERFORMANCE INDICATOR

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. (3-5-ETS-1-2)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the criteria and constraints of solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem	Generate multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.	Explain using evidence which solutions are best based on how well each is likely to meet the criteria and constraints of the problem.

PERFORMANCE INDICATOR

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. (3-5-ETS-1-3)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify variables to be controlled in fair tests.	Plan fair tests in which variables are controlled and identify potential failure points.	Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	Using results from tests, explain how aspects of a model or prototype can be improved.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | ENGINEERING, TECHNOLOGY, AND APPLICATION OF SCIENCE (ETS1 + ETS2) | 6-8

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

apply the engineering design process to define, develop and optimize a solution to a real world problem and demonstrate understanding of how engineering, technology, science, and society are interconnected (ETS) through the integration of science and engineering practices, crosscutting concepts and disciplinary core ideas.

PERFORMANCE INDICATOR

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. (MS-ETS1-1)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Identify a problem to be solved through design.	Identify the scientific principles relevant to the problem and the potential impacts on people and the natural environment that may limit possible solutions.	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	Explain how the criteria and constraints take into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

(ETS1 + ETS2) | 6-8 (CONTINUED)

B PERFORMANCE INDICATOR

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. (MS-ETS1-2)

IA	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify how each design solution would solve the problem.	Describe how design solutions meet the criteria and constraints of the problem.	Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	Explain the importance of specific criteria and constraints in solving the problem.

PERFORMANCE INDICATOR

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. (MS-ETS1-3)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify relationships within given data.	Explain given data to show similarities and differences among several design solutions.	Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.	Based on analysis, propose a new design solution to better meet the criteria for success.

$\sqrt{\begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{\beta} \\ \beta \sqrt{\Delta} p^{+} \sqrt{\beta} \end{array} }$

(ETS1 + ETS2) | 6-8 (CONTINUED)

PERFORMANCE INDICATOR

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. (MS-ETS1-4)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Identify relevant components of a model for testing.	Describe relationships between relevant components of a model.	Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	Apply and adapt a model for a related but different object, tool or process.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

SCORING CRITERIA SCIENCE | ENGINEERING, TECHNOLOGY, AND APPLICATION OF SCIENCE (ETS1 + ETS2) | 9-12

$\sqrt{ \begin{array}{c} e^{-} \sqrt{100^{\circ}C} \sqrt{ \\ \beta \sqrt{\Delta} p^{+} \sqrt{ \end{array} } }$

Students will ...

apply the engineering design process to define, develop and optimize a solution to a real world problem and demonstrate understanding of how engineering, technology, science, and society are interconnected (ETS) through the integration of science and engineering practices, crosscutting concepts and disciplinary core ideas.

PERFORMANCE INDICATOR

Analyze a major global challenge to specify qualitative criteria and constraints for solutions that account for societal needs and wants. (HS-ETS1-1)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe with rationale a major global challenge.	Explain the physical system in which the problem is embedded and identify the societal needs and wants relative to the problem.	Analyze a major global challenge to specify qualitative criteria and constraints for solutions that account for societal needs and wants.	Analyze a major global challenge to prioritize qualitative criteria and constraints for solutions that account for societal needs and wants.

PERFORMANCE INDICATOR

Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. (HS-ETS1-2)

A	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Describe a complex real- world problem and identify smaller, more manageable problems within it.	Describe the criteria and constraints of a solution to a complex real-world problem that can be solved through engineering.	Design a solution to a complex real- world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	Evaluate the effectiveness of the solution to a complex real-world problem based on the criteria and constraints.

(ETS1 + ETS2) 9-12 (CONTINUED)

PERFORMANCE INDICATOR

Evaluate a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. (HS-ETS1-2)

₹	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITER	Explain the solution to a complex real-world problem and identify the smaller, more manageable problems within in.	Describe the criteria and constraints of a solution to a complex real-world problem that can be solved through engineering.	Evaluate a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	Propose a design solution for parts of the real-world problems that may remain once the proposed solution is implemented.

PERFORMANCE INDICATOR

Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including costs, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. (HS-ETS1-3)

	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERIA	Generate and prioritize criteria and constraints of a solution to a complex real- world problem.	Generate multiple solutions to the complex real-world problem.	Evaluate a solution to a complex real- world problem based on prioritized criteria and trade-offs that account for a range of constraints, including costs, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	Propose a design solution for parts of the real-world problem that may remain once the proposed solution is implemented.

SCORING CRITERIA SCIENCE | ENGINEERING, TECHNOLOGY, AND APPLICATION OF SCIENCE (ETS1 + ETS2) | 9-12 (CONTINUED)

e⁻ √ 100°C √ β √ Δ p⁺ √

PERFORMANCE INDICATOR

E

Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem. (HS-ETS1-4)

4	BEGINNING	DEVELOPING	PROFICIENT	EXPANDING
SCORING CRITERI	Identify the component parts of a model that would illustrate the impact of proposed solutions to a complex real-world problem.	Describe the relationship between the parts of a model and the criteria and constraints inherent in the real-world problem.	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.	Evaluate the strengths and limitations of a computer simulation that models the impact of proposed solutions to a complex, real-world problem.

Note: Letters in parentheses reflect the performance expectations in NGSS. The performance indicators marked with an asterisk (*) integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

