

Table of Contents

Acknowledgments
Our Vision for Rhode Island . 1

Introduction . 2

Advisory Committee . 3

Reviewers . 4

Computer Science & Relevance to Rhode Island .5

Alignment with National Efforts / Organizations and Key Documents Referenced 6

Process & Timeline . 7

Guiding Principles . 8

Equity in Computer Science Education . 9

Computational Thinking. .10

Standards/Grade Bands. .11

Implementation of Standards . 12

Core Concepts & Sub-Concepts . 13

1. Computational Thinking & Programming . 14

2. Computing Systems & Networks . 15

3. Cybersecurity . 16

4. Data & Analysis . 17

5. Digital Literacy . 18

6. Responsible Computing in Society . 19

Practices . 20

Reading the Standards . 23

K-12 Computer Science Education Standards. .24

Appendices

Appendix A: K-12 Computer Science Education Standards (with descriptions) 38

Appendix B: Glossary . 57

Appendix C: Glossary References . 66

Acknowledgements

The development of the Computer Science Education Standards was a statewide collaboration with
contributions from a diverse group of Rhode Island stakeholders. I express my deepest appreciation
to the Advisory Committee that gave up one Saturday a month for almost a year to review, evaluate,
revise, and write the new standards. Their extraordinary dedication, enthusiasm, and thoughtful-
ness made the standards a reality. Special thanks go to Chris Allen, Kathi Fisler, Tim Henry, Joe
Mazzone, Ilona Miko, and Vic Fay Wolfe for providing team leadership as we progressed. A very
heartfelt thank you to Kathi Fisler and Ilona Miko for going above and beyond their responsibilities
by devoting extra time and effort through extensive review, editing, discussion, and support.

I acknowledge, with much appreciation, the Review Team that looked at the draft standards with
fresh eyes, and provided insightful comments and suggestions. Members of the public also con-
tributed time and attention to reviewing the draft standards, and I thank them for invaluable feed-
back. I express my gratitude to the experts in the cybersecurity field and specialists in
digital/media/instructional literacy who critiqued relevant sections of the standards.

A special note of thanks to Pat Yongpradit (Code.org), Peter McLaren (Next Generation Science Stan-
dards Writing Team Member), John Bilotta (Rhode Island Society of Technology Educators), and
Tommy Gober and Kevin Nolten (Cyber Innovation Center) for their guidance, support, and encour-
agement.

The development of the Computer Science Education Standards for Rhode Island would have been
impossible without the support of the van Beuren Charitable Foundation, and especially senior pro-
gram officer Deborah S. Linnell.

Last but not least, many thanks to CS4RI and the Rhode Island Department of Education (RIDE) for
helping us achieve our goal of developing comprehensive computer science education standards for
Rhode Island.

The excitement and eagerness with which everyone approached this project is testament to the belief
that all Rhode Island students deserve the best education for future success.

Carol M. Giuriceo, Ph.D.
Chair, Computer Science Education Standards Advisory Committee

Our Vision for Rhode Island

Our students, including those historically underrepresented, understand the value, influence, and
relevance of computer science education. We believe that increased use and mastery of compu-
tational thinking through the grade levels builds human capacity, and allows students to become
informed users, as well as active creators, of technology. Students shall thoughtfully and ethically
approach personal and societal challenges and participate in finding solutions to local, regional, and
global issues.

Our educators collaborate within communities of professional practice as computer science becomes
the multi-disciplinary bridge across school districts. We believe that an engaged citizenry emerges
from a strong focus on essential life and career skills, problem-solving abilities, and lifelong commit-
ment to learning, which positions Rhode Island as a leader in technology and a premier innovative
center in the United States.

1

Introduction

In January 2017, the Rhode Island STEAM Center organized and convened a statewide Computer
Science (CS) Education Advisory Committee, with funding from the van Beuren Charitable Founda-
tion, with the goal of creating CS education standards for Rhode Island. The impetus for this work
was the current momentum surrounding the implementation of CS education in K-12 through the
Computer Science for Rhode Island (CS4RI) initiative and the recent national emphasis on computer
science education.

In March 2017, the CS Education Standards Advisory Committee, composed of Rhode Islanders
from across the state, met to begin work on developing and aligning with the nationally-recognized
K-12 Computer Science Framework (released October 2017), the Computer Science Teachers Associ-
ation (CSTA) Computer Science Standards (draft standards November 2016; final standards released
July 2017), and CS standards work in other states.

The Advisory Committee represented a broad range of expertise. We included elementary, middle,
and high school teachers, district coordinators and administrators, higher education faculty, and in-
dustry professionals. Some members had computer science expertise; others were pedagogy experts
and understood the value and use of academic standards. All served pro bono. Committee meetings
occurred one Saturday a month through December 2017. During this time, we reviewed existing
standards, evaluated practices, and identified core concepts.

We chose to adapt rather than adopt, the CSTA K-12 Standards because we wanted to create stan-
dards that retained the rigorous and collaborative work of the CSTA yet also related to the needs of
Rhode Island. Our adaptations include:

• reorganizing the standards into concepts that we believe more accurately describe our focus
and create logical progressions without too much overlap

• forming a new Digital Literacy concept focused on the use of computing devices, recogniz-
ing its fit alongside the current Information Literacy standards (recently revised) and Media
Literacy standards (in development)

• forming a new Cybersecurity concept and recognizing its increasing global relevance, as well
as Rhode Island’s growing and economically-relevant cybersecurity sector

Throughout the process, we focused on creating pathways that set realistic expectations for all stu-
dents and can be implemented in a sustainable way in Rhode Island. They do not represent a com-
prehensive list of all topics within computer science.

Most of all, we kept equity at the forefront of our discussions. We believe that increased use and
mastery of computational thinking through the grade levels builds human capacity.

2

Advisory Committee

• Chris Allen, NBCT, Fourth Grade Teacher, Greenbush Elementary School, West Warwick Pub-
lic Schools

• Jenny Chan-Remka, Ed.D., Assistant Superintendent, Woonsocket Education Department

• Michelle Conary, Computer Literacy Instructor, Chariho Middle School, Chariho Regional
School District

• Jane L. Daly, Assistant Superintendent of Schools, Chariho Regional School District

• Vic Fay-Wolfe, Ph.D., Computer Science, University of Rhode Island

• Kathi Fisler, Ph.D., Research Professor, Computer Science, Brown University/Co-Director,
Bootstrap

• Carol M. Giuriceo, Ph.D., Director, Rhode Island STEAM Center @ Rhode Island College

• Lenora E. Goodwin, Consulting Teacher, Teacher Retention and Induction Network (T.R.A.I.N.),
Providence Public Schools

• Timothy Henry, Ph.D., Professor, IT Graduate Director, New England Institute of Technology

• Dominic Herard, Mathematics & Computer Science Teacher, Times Squared STEM Academy,
Providence

• Verda Jones, Business & Technology Instructor, Shea Senior High School, Pawtucket School
District

• Ramarao Koppaka, Staff Vice President, Principal Enterprise Architect, FM Global

• Linda Larsen, Director of Education Outreach & Workforce Development, Southeastern New
England Defense Industry Alliance (SENEDIA)

• Bryan Lucas, Computer Science/Literacy Teacher, Chariho Middle School, Chariho Regional
School District

• Joe Mazzone, Secretary, CSTA-RI/Career and Technical Education Instructor, William M. Davies
Jr. Career and Technical High School, Lincoln

• Ilona Miko, Ph.D., MikoArtScience Consulting

• Ryan Mullen, Coordinator of Teaching & Learning, Warwick Public Schools

• Elizabeth (Liz) Patterson, Computer Science Teacher, Portsmouth High School, Portsmouth
School Department

• Janet Prichard, Ph.D., Professor, Information Systems and Analytics, Bryant University

• Cmdr. Joseph E. Santos, Military Professor, U.S. Naval War College, Newport

3

Reviewers
Review Team

• Amanda Bagley, Second Grade Education Teacher, Greenbush Elementary School, West War-
wick Public Schools

• John Bilotta, Executive Director, Rhode Island Society of Technology Educators (RISTE)

• Joe Devine, Partner & CTO, Bridge Technical Talent, LLC

• Howard L. Dooley, Jr., Project Manager, Rhode Island Technology Enhanced Sciences and Com-
puting (RITES +C), University of Rhode Island

• Donald Gregory, Education Specialist, Providence Public Library

• Linda A. Jzyk, Grant Specialist, Rhode Island College Foundation, Former Science and Tech-
nology Specialist, Rhode Island Department of Education (RIDE)

• Tom Kowalczyk, Founder, KMRM,LLC

• Theresa Moore, President, T-Time Productions

• Diane Sanna, Assistant Superintendent, Bristol Warren Regional School District

• John Smithers, CEO, Tech Collective

• Holly Walsh, Digital Learning Specialist, Office of College and Career Readiness, Rhode Island
Department of Education (RIDE)

Specialists
Cybersecurity

• Jason Albuquerque, C/CISO,CGCIO, Chief Information Security Officer, Carousel Industries

• Brig Gen Kimberly A. Baumann, Ph.D., Assistant Adjutant General, Rhode Island National
Guard

• Simon A. Cousins, Principal Client Specialist, FM Global

• Richard Siedzik, Director of Information Security and Planning/ISO, Bryant University

Digital Literacy

• Renee Hobbs, Ph.D., Professor, Department of Communication Studies; Co-Director, Graduate
Certificate in Digital Literacy, Harrington School of Communication and Media, University of
Rhode Island

• Mary H. Moen, Ph.D., Assistant Professor, Graduate School of Library and Information Studies,
University of Rhode Island

• Zoey Wang, Graduate Assistant, Rhode Island STEAM Center @ Rhode Island College

Public Review: Their Feedback
An open invitation was extended to teachers, principals, district administrators, superintendents,
industry professionals, and other stakeholders to submit comments on the draft standards. There
feedback provided valuable input that greatly enhanced the content of the standards.

4

Computer Science & Relevance to Rhode Island

In January 2016, the Metropolitan Policy Program at Brookings, along with Battelle Technology
Partnership Practice (now TEConomy Partners, LLC) and with support from Monitor Deloitte, De-
loitte Consulting LLP released Rhode Island Innovates: A Competitive Strategy for the Ocean State,
a detailed economic assessment with recommendations for Rhode Island’s economic development.
Brookings and its partners engaged in a six-month inquiry with private- and public-sector stake-
holders across the state to assess Rhode Island’s present situation and competitive position, and to
provide an action plan for strategy development.

The report identified CS science as a core competency in Rhode Island with areas of focus in data
sciences, robotics, cybersecurity, and algorithms. According to Brookings, a core competency “rep-
resent[s] zones of endeavor where a place has the ability to grow. Core competencies indicate where
there is a critical mass of expertise and creative activity across product development and process
improvements that has the potential to generate new intellectual property and startups . . . core
competencies highlight where a state’s firms and research institutions have the capacity not only to
advance new research discoveries but also to apply them, mobilize talent, and create good jobs.” The
report indicated that over 3,800 jobs posted online in 2013 in Rhode Island required knowledge of
at least one programming language.

Unfortunately, the Brookings inquiry also found that student engagement with CS was low, with
many of the state’s schools only offering a basic computer literacy class as a graduation requirement,
rather than a more rigorous and comprehensive CS course. During the 2014-2015 academic year,
only 72 Rhode Island students took the AP CS exam. Acknowledging the need for sustainable so-
lutions, recommendations included incorporating CS into the PK-12 curriculum through changing
technology graduation requirements and public/private partnerships that work to implement CS
courses and professional development.

To meet this need, the Computer Science for Rhode Island initiative, or CS4RI was created to bring
CS learning opportunities to all Rhode Island schools. National and local programs from Microsoft,
Project Lead the Way, and Code.org, to the University of Rhode Island and Brown University, are
currently serving as content providers, offering professional development and established curricula
to schools across the state. The CS4RI initiative brings computer education to the forefront of the
discussion, as well as needed resources to jumpstart CS incorporation in K-12 education.

Conversations with educators during the first months of CS4RI implementation indicated that ed-
ucators would welcome guidelines that assist in the development of computer science pathways.
Identifying achievement outcomes for students in different grades would allow educators to feel
confident that they were teaching what students need to know. In January 2017, the Rhode Island
STEAM Center @ Rhode Island College received funding from the van Beuren Charitable Founda-
tion to develop Computer Science Education Standards for Rhode Island.

5

Alignment with National Efforts

The Computer Science (CS) Education Standards process began at a critical time in K-12 computer
science education.

• In October 2016, the K-12 Computer Science (CS) Framework was released. The Framework,
a national effort led by the Association for Computing Machinery (ACM), Code.org, Computer
Science Teachers Association (CSTA), Cyber Innovation Center (CIC), and the National Math +
Science Initiative (Steering Committee) defined conceptual guidelines for states and districts
to create a K-12 pathway in CS. Participants in the development of the Framework included
writers, advisors, and researchers who represented associations (such as the International So-
ciety for Technology Education [ISTE]), industry (such as Microsoft, Google, Apple), states,
school districts, higher education, and K-12.

• In July 2017, the Computer Science Teachers Association released their revised K-12 Com-
puter Science Standards, which aligned with the K-12 CS Framework. These standards de-
scribe learning objectives designed to provide the foundation for a complete computer science
curriculum at the K-12 level.

• Both the Framework and the CSTA Standards are based on current professional research and
practice in computer science education.

Organizations and Key Documents Referenced

K-12 Computer Science Framework

Our standards reflect the recommendations of the K-12 Computer Science Framework, led by the
Association for Computing Machinery, Code.org, Computer Science Teachers Association, Cyber In-
novation Center, and National Math and Science Initiative, in partnership with states and districts.
The K-12 Compute Science Framework is endorsed by leading industry and educational organiza-
tions, as well as K-12, higher education, and research leaders in the field of computer science educa-
tion. To find more information, including a full list of supporters, visit k12cs.org.

2017 CSTA K-12 Computer Science Standards

The Advisory Committee used the 2017 CSTA K-12 Computer Science Standards as a foundation
for our standards but modifications were made to reflect the education environment in Rhode Is-
land. The CSTA Standards are licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. To find more information, visit
https://www.csteachers.org/page/standards.

2016 Massachusetts Digital Literacy and Computer Science (DLCS) Curriculum Framework

The Advisory Committee reviewed the 2016 Massachusetts Digital Literacy and Computer Science
(DLCS) Curriculum Framework developed by the Massachusetts Department of Elementary and
Secondary Education with a focus on the Digital Tools and Collaboration strand. To find more
information, visit http://www.doe.mass.edu/frameworks/dlcs.pdf.

6

https://k12cs.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.csteachers.org/page/standards
http://www.doe.mass.edu/frameworks/dlcs.pdf

Process & Timeline

The Computer Science (CS) Education Standards Committee met monthly for day-long sessions from
March 2017 to December 2017. Smaller committees convened more frequently during January and
February 2018 for targeted discussions. Our process included reviewing the K-12 CS Framework
and existing CS standards in other states. The Committee identified working Core Concepts and
Sub-Concepts after the initial review. Smaller working groups with members representing different
sectors formed to focus on specific concepts. Review of the CSTA CS K-12 Standards began. As work
progressed, the Committee decided to combine two of the existing Concepts into one and add two
new Concepts. The Committee followed a similar process with the Sub-Concepts.

Other stakeholders also helped to inform the standards. Although the Committee used existing
standards in cybersecurity and digital literacy as starting points, we reached out to cybersecurity
experts who offered suggestions and recommendations so the standards were comprehensive but
not overly technical. Additionally, the Committee was aware of the overlap among digital literacy,
media literacy, and instructional literacy, and met with specialists to discuss how to include digital
literacy in the CS standards without duplication.

The Review Team, composed of Rhode Islanders from across the state, served as the reviewers for
the draft standards. They evaluated the draft standards using a checklist developed by the K-12 CS
Framework developers. Criteria included focus/manageability, equity, coherence/progression, clar-
ity/accessibility, and measurability, among others.

7

Our Guiding Principles

The following Guiding Principles helped establish our aspirational vision
and informed the development of K-12 Computer Science education

standards for Rhode Island.

Broaden Participation &
Equity

All students regardless of age, race, ethnicity, gender, socioeconomic
status, special needs, English proficiency, or any other demographic
will have the opportunity to participate in computer science.The
content and practices of the standards will be accessible to all.

Stimulate Learning &
Curiosity

The standards at all grade levels will connect to appropriate real world
challenges as a means to motivate and empower, promote individual
growth, and spark a desire for life-long learning.

Build Connections Across
Disciplines

Computer science will complement other disciplines and build upon and develop
student knowledge.,The standards will connect with practices and
concepts from the Common Core State Standards (CCSS) and the Next
Generation Science Standards (NGSS) to promote learning across
disciplines.

Encourage
Workforce/Economic

Development

Students will have the skills, practices, and knowledge to participate in a
world that is increasingly influenced and shaped by technological
advancements.,The standards will help to prepare students who can
adapt and prosper under constantly changing conditions.

Support Teachers
The standards will identify focused learning progressions and multi-tier
teaching approaches that meet the needs of all learners.

Inform with Current
Research

The standards will be based on current professional research and practice
in computer science education and pedagogy.

8

Equity in Computer Science Education

The Rhode Island Computer Science Education Standards Advisory Committee believes that equity
and broadening participation must be at the forefront of the computer science initiative to ensure
that all Rhode lsland students benefit. We strongly agree with the position identified in the K-12
Computer Science Framework (2016) which states:

When equity exists, there are appropriate supports based on individ-
ual students’ needs so that all have the opportunity to achieve similar
levels of success. Inherent in this goal is a comprehensive expectation
of academic success that is accessible by and applies to every student.
. . . equity, inclusion, and diversity are critical factors in all aspects of
computer science.(pp.23, 26)1

We constantly returned to this issue throughout the development of the standards. We worked to
ensure equity is embedded in the standards themselves, the descriptions, and the accompanying
suggested activities. Additionally, standards can be met without computing devices or with a
limited amount of available hardware so implementation is possible for all schools.

1. K-12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org

9

Computational Thinking

Computational thinking involves solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to
computer science. . . . This kind of thinking will be part of the skill set of, not
only other scientists, but of everyone else. Ubiquitous computing is to today
as computational thinking is to tomorrow. Ubiquitous computing was
yesterday’s dream that become today’s reality; computational thinking is
tomorrow’s reality.

– Jeannette Wing, March 2006
Communications of the ACM, 49(3), 33-35.

Computational thinking is central to the standards and a necessary skill for participation in today’s
society. It can be applied broadly to solving complex problems in other disciplines and can be
taught across the K-12 curriculum.1

1. Computational Thinking for a Computational World. (2017). Retrieved from
http://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf

10

Standards

Standards represent pathways that are realistic expectations for all students. They identify the
knowledge, practices, and skills in computer science that all students should know and be able to
do at each level in their education. They serve as specific performance measures and are used as
reference points for planning and teaching, including but not limited to, the development of
curriculum frameworks, curricula, lesson plans, instruction, professional development, and
assessment.

The standards are written to be aspirational – they represent the concepts and practices that all
students need to master. They are designed to inform, encourage, and drive a sustainable computer
science education program, and were developed to be cognitively appropriate for each grade band.
Careful attention was paid to word choice in the standards to ensure measurability.

Grade Bands

The decision to adopt and use the grade bands identified in the CSTA K-12 Standards document –
K-2, 3-5, 6-8, 9-12 – allows for increased flexibility for implementation in schools. Although the
CSTA separated grades 9-12 into two levels – 9-10, 11-12 – with the 11-12 level designed for
students enrolled in more rigorous courses, we decided that it was appropriate to extend the 9-10
level to 9-12 at this time since our goal focused on standards for ALL students.

11

Implementation of Standards

The Computer Science (CS) Education Standards are designed for all students K-12 in Rhode Island
regardless of career aspirations. They represent the knowledge and skills that all students need to
effectively participate and be productive in today’s society.

At this time, adoption of the CS Education Standards by school districts is not mandatory.
However, the response to the CS4RI initiative in connecting content providers with local schools to
reduce barriers and provide quality CS education and professional development has been
overwhelmingly positive at all grade levels.

CS4RI will support implementation of the CS Education Standards in school districts through a
four-pronged approach:

1. All curricula and professional development offered by CS content providers in the CS4RI
matrix will be aligned with the new Rhode Island standards. The new Memorandums of
Understanding include this requirement.

2. The SCRIPT – School CSforALL Resource & Implementation Planning Tool – will be offered in
Summer 2018 to all school districts to serve as a framework and platform to guide district
staff in the creation of implementation plans based on the needs and goals of individual
districts.

3. CS4RI will be working closely with the Computer Science Teachers Association – Rhode
Island to provide resources and support through communities of practice.

4. CS4RI will be developing additional resources and supplementary materials to support CS
Education Standards adoption in K-12 education.

12

Core Concepts and Sub-Concepts

The Core Concepts represent specific areas of disciplinary importance in computer science. The
Sub-Concepts represent specific ideas within each concept.

Computational Thinking & Programming

• Algorithms
• Variables
• Data Structures & Data Types
• Control Structures
• Modularity
• Computational Design

Computing Systems & Networks

• Human-Computer Interaction
• Hardware & Software
• Troubleshooting
• Networks & the Internet

Cybersecurity
• Risks
• Safeguards
• Response

Data & Analysis
• Collection, Visualization, & Transformation
• Inference & Models
• Storage

Digital Literacy
• Creation & Use
• Searching Digital Information
• Understanding Software Tools

Responsible Computing in Society
• Culture
• Safety, Law, & Ethics
• Social Interactions

Each Core Concept and Sub-Concept is described in more detail on the following pages. The
descriptions were adopted from the K-12 CS Framework. Certain changes and additions were made
when necessary.

13

Computational Thinking & Programming

Overview: Computational thinking involves problem solving that requires the logical analysis of
data. It serves as a fundamental skill for all students, and can be applied to complex problems
across disciplines. These skills empower people to communicate with the world in new ways and
solve compelling problems. Creating meaningful and efficient programs involves choosing which
information to use and how to process and store it, breaking apart large problems into smaller
ones, recombining existing solutions, and analyzing different solutions.

Algorithms

An algorithm is a sequence of steps designed to accomplish a specific
task. Algorithms are translated into programs, or code, to provide
instructions for computing devices, and are designed to be carried
out by both humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world. As they
progress, students learn about the development, combination, and
decomposition of algorithms, as well as the evaluation of competing
algorithms.

Variables

Computer programs store and manipulate data using variables. In early grades,
students learn that different types of data, such as words, numbers,
or pictures, can be used in different ways. As they progress,
students learn about variables, and ways to organize large
collections of data into data structures of increasing complexity.

Data Structure &
Data Types

Data structures store and organize data within a computer program. Data
types classify data by attributes. In early grades, students learn
to model and identify real-world examples of data. As they progress,
they organize and create programs to process those data.

Control
Structures

Control structures specify the order in which instructions are executed
within an algorithm or program. In early grades, students learn
about sequential execution and simple control structures. As they
progress, students expand their understanding to combinations of
structures that support complex execution.

Modularity

Modularity involves breaking down tasks into simpler tasks, and combining simple
tasks to create something more complex. In early grades, students
learn that algorithms and programs can be designed by breaking tasks
into smaller parts and recombining existing solutions. As they
progress, students learn about recognizing patterns to make use of
general, reusable solutions for commonly occurring scenarios, and
clearly describing tasks in ways that are widely usable.

Computational Design

Programs are developed through a design process that is often repeated until
the programmer is satisfied with the solution. In early grades,
students learn how and why people develop programs. As they
progress, students learn about the tradeoffs in program design
associated with complex decision, which involve user constraints,
efficiency, ethics and testing.

14

Computing Systems & Networks

Overview: People interact with a wide variety of computing devices that collect, store, analyze, and
act upon information in ways that can affect human capabilities, both positively and negatively.
The physical components (hardware) and instructions (software) that make up a computing system
communicate and process information in digital form. An understanding of hardware and software
is useful when troubleshooting a computing system that does not work as intended.

Additionally, computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of computing.
Networks and communication systems provide greater connectivity in the computing world by
providing fast, secure communication, and facilitating innovation.

Human-Computer
Interaction

Many everyday objects contain computational components that both sense and
act on the world. In early grades, students learn features and
applications of common computing devices. As they progress, students
learn about connected systems and how the interaction between humans
and devices influences design decisions.

Hardware
& Software

Computing systems use hardware and software to communicate and process
information in digital form. In early grades, students learn how
systems use both hardware and software to represent and process
information. As they progress, students gain a deeper understanding
of the interaction between hardware and software at multiple levels
within computing systems.

Troubleshooting

When computing systems do not work as intended, troubleshooting strategies
help people solve the problem. In early grades, students learn that
identifying the problem is the first step to fixing it. As they
progress, students learn systematic problem-solving processes and how
to develop their own troubleshooting strategies, based on a deeper
understanding of how computing systems work.

Networks
& the Internet

Computing devices communicate with each other across networks to share
information. In early grades, students learn that computers connect
them to other people, places, and systems around the world. As they
progress, students gain a deeper understanding of how information is
sent and received across different types of networks.

15

Cybersecurity

Overview: Cybersecurity includes practices, processes, technologies, and other protective measures
that are designed to protect against unwanted, unauthorized, or illegal access to or use of data,
through onsite or remote devices, programs, and/or networks. As more information becomes
digitized, both proactive and adaptive approaches to securing data become essential to meet the
frequent and continually-evolving cybersecurity risks.

Risks

Being online or connected to a network has become part of a daily routine in personal,
school and work environments. Students have ubiquitous access to information but
are also exposed to common threats, scams, and fraud. In the early grades, students
learn to identify and detect activity that may be monitoring and compromising their
information. As they progress, students learn about social engineering, privacy
concerns, and personal responsibility.

Safeguards

Transmitting information securely across networks requires appropriate protection that
will mitigate or contain the impact, or even prevent the cybersecurity event.
Safeguards include limiting access, using targeted processes and procedures,
maintaining security software, and continuous monitoring of activity. In early grades,
students learn how to protect their personal information. As they progress, students
learn increasingly complex ways and tools used to protect information sent across
networks and the trade-offs when selecting and implementing cybersecurity strategies.

Response

Implementing appropriate measures in response to a cybersecurity event requires
an awareness of and a suitable reaction to the threat. Responses include pre-event
planning, adoption and maintenance, threat containment, structure reporting and
communications protocols, root cause analysis, and continuous process improvement.
In the early grades, students learn when to report suspicious activity. As they progress,
students learn how to take appropriate action on both personal and organizational levels.

16

Data & Analysis

Overview: Computing systems exist to process data. The amount of digital data generated in the
world is rapidly expanding, so the need to process data effectively is increasingly important. Data
are collected, analyzed and stored to better understand our social structures, geography, health and
environment, and to make more accurate predictions about them.

Collection, Visualization, &
Transformation

Data are collected with both computational and non-computational tools
and processes. In early grades, students learn how data about themselves
and their environment are collected and used. As they progress, students
learn the effects of collecting data with computational and automated
tools. Data are transformed throughout the process of collection, digital
representation, and analysis. In early grades, students learn how
transformations can be used to simplify data. As they progress, students
learn about more complex operations to discover patterns and trends,
and communicate those to others.

Inference & Models

Data science is one example where computer science serves many fields.
Computer science and other sciences use data to make inferences, theories,
or predictions based upon data collected from users or simulations. In early
grades, students learn about the use of data to make simple predictions.
As they progress, students learn how models and simulations can be used
to examine theories and understand systems, and how predictions and
inferences are affected by more complex and larger data sets.

Storage

Core functions of computers are storing, representing, and retrieving data.
In early grades, students learn how data are stored on computers. As they
progress, students learn how to evaluate different storage methods,
including the tradeoffs associated with those methods.

17

Digital Literacy

Overview: Digital literacy refers to the ability to leverage software technology to create, share, and
modify artifacts, as well as search over digital information. This literacy includes understanding
the benefits and implications of software tool use while accessing digital information and
collaborating on digital artifacts. Digital literacy is a multifaceted concept that extends beyond
skills-based activities and incorporates both cognitive and technical skills.

Creation & Use

Software tools are used to create and edit artifacts as well as locate
and retrieve information. In early grades, students learn how to
perform common operations using local, networked, or online tools.
As they progress, students learn how to collaborate using software
tools, and make informed decisions according to purpose and need.

Searching Digital Information

Locating, retrieving, and organizing relevant information includes
being able to search for information in different ways. In early
grades, students conduct basic and multi-criteria searches to find
information in digital resources. As they progress, students learn to
expand to multiple formats and databases, and synthesize search
results to answer a complex question or solve a problem.

Understanding Software Tools

Humans interact with software tools to perform tasks. In early grades,
students begin by understanding what software can do and how to
explain this to others. As they progress, they learn about how
software tools perform computations to incorporate multiple
functions, and how software can be customized depending on who is
using it.

18

Responsible Computing in Society

Overview: Computing affects many aspects of our world in both positive and negative ways, and at
local and global scales. Individuals and communities influence computing through both their
behaviors and cultural and social interactions, and in turn, computing influences new cultural
practices. An informed and responsible person should understand the social implications of
computing technology, including its impact on equity and access to computing.

Culture

Computing influences culture—including belief systems, language,
relationships, technology, and institutions—and culture shapes how
people engage with and access computing. In early grades, students
learn how computing can be helpful and harmful. As they progress,
students learn about tradeoffs associated with computing and potential
future impacts of computing on global societies.

Safety, Law, & Ethics

Legal and ethical considerations of using computing devices influence
behaviors that can affect the safety and security of individuals. In early
grades, students learn the fundamentals of digital citizenship and
appropriate use of digital media. As they progress, students learn about
the legal and ethical issues that shape computing practices.

Social Interactions

Computing can support new ways of connecting people, communicating
information, and expressing ideas. In early grades, students learn that
computing can connect people and support interpersonal communication.
As they progress, students learn how the social nature of computing
affects institutions and careers in various sectors.

19

Practices

We adopted the practices that the K-12 CS Framework developed, and that are used in the CSTA
K-12 Standards. These practices describe the behavior and ways of thinking that
computationally-literate students use to engage in Core Concepts.

The Advisory Committee added an eighth practice – Using Technology Appropriately – which
describes the necessary behavior and ways of thinking that support the Cybersecurity and Digital
Literacy Core Concepts.

Practice 1
Fostering an Inclusive
Computing Culture

Overview: Building an inclusive and diverse computing culture requires
strategies for incorporating perspectives from people of different genders,
ethnicities, and abilities. Incorporating these perspectives involves
understanding the personal, ethical, social, economic, and cultural contexts
in which people operate. Considering the needs of diverse users during
the design process is essential to producing inclusive computational products.

1.1 Include the unique perspectives of others and reflect on one’s own
perspectives when designing and developing computational products.

1.2 Address,the needs of diverse users during the design process to produce
artifacts with broad accessibility and usability.

1.3 Employ self- and peer-advocacy to address bias in interactions, product
design, and development methods.

Practice 2
Collaborating Around

Computing

Overview: Collaborative computing is the process of performing a
computational task by working in pairs and on teams. Because it involves
asking for the contributions and feedback of others, effective collaboration
can lead to better outcomes than working independently. Collaboration
requires individuals to navigate and incorporate diverse perspectives,
conflicting ideas, disparate skills, and distinct personalities. Students should
use collaborative tools to effectively work together and to create complex
artifacts.

2.1 Cultivate working relationships with individuals possessing diverse
perspectives, skills, and personalities.

2.2 Create team norms, expectations, and equitable workloads to increase
efficiency and effectiveness.

2.3 Solicit and incorporate feedback from, and provide constructive feedback
to team members and other stakeholders.

2.4 Evaluate and select technological tools that can be used to collaborate on
a project.

20

Practice 3
Recognizing & Defining

Computational Problems

Overview: The ability to recognize appropriate and worthwhile
opportunities to apply computation is a skill that develops over
time and is central to computing. Solving a problem with a
computational approach requires defining the problem, breaking it
down into parts, and evaluating each part to determine whether a
computational solution is appropriate.

3.1 Identify complex, interdisciplinary, real-world problems that can
be solved computationally.

3.2 Decompose complex real-world problems into manageable
sub-problems that could integrate existing solutions or procedures.

3.3 Evaluate whether it is appropriate and feasible to solve a problem
computationally.

Practice 4
Developing & Using

Abstractions

Overview: Abstractions are formed by identifying patterns and
extracting common features from specific examples to create
generalizations. Using generalized solutions and parts of solutions
designed for broad reuse simplifies the development process by
managing complexity.

4.1 Extract common features from a set of interrelated processes
or complex phenomena.

4.2 Evaluate existing technological functionalities and incorporate
them into new designs.

4.3 Create modules and develop points of interaction that can
apply to multiple situations and reduce complexity.

4.4 Model phenomena and processes and simulate systems
to understand and evaluate potential outcomes.

Practice 5
Creating Computational

Artifacts

Overview: The process of developing computational artifacts
embraces both creative expression and the exploration of ideas to
create prototypes and solve computational problems. Students
create artifacts that are personally relevant or beneficial to their
community and beyond. Computational artifacts can be created by
combining and modifying existing artifacts or by developing new
artifacts. Examples of computational artifacts include programs,
simulations, visualizations, digital animations, robotic systems, and
apps.

5.1 Plan the development of a computational artifact using an iterative
process that includes reflection on and modification of the plan, taking
into account key features, time and resource constraints, and user
expectations.

5.2 Create a computational artifact for practical intent, personal
expression, or to address a societal issue.

5.3 Modify an existing artifact to improve or customize it.

21

Practice 6
Testing & Refining

Computational Artifacts

Overview: Testing and refinement is the deliberate and iterative process
of improving a computational artifact. This process includes debugging
(identifying and fixing errors) and comparing actual outcomes to
intended outcomes. Students also respond to the changing needs and
expectations of end users and improve the performance, reliability,
usability, and accessibility of artifacts.

6.1 Systematically test computational artifacts by considering all
scenarios and using test cases.

6.2 Identify and fix errors using a systematic process.

6.3 Evaluate and refine a computational artifact multiple times to
enhance its performance, reliability, usability, and accessibility.

Practice 7
Communicating About

Computing

Overview: Communication involves personal expression and exchanging
ideas with others. In computer science, students communicate with
diverse audiences about the use and effects of computation and the
appropriateness of computational choices. Students write clear comments,
document their work, and communicate their ideas through multiple
forms of media. Clear communication includes using precise language and
carefully considering possible audiences.

7.1 Select, organize, and interpret large data sets from multiple sources to
support a claim.

7.2 Describe, justify, and document computational processes and solutions
using appropriate terminology consistent with the intended audience and
purpose.

7.3 Articulate ideas responsibly by observing intellectual property rights
and giving appropriate attribution.

Practice 8
Using Technology

Appropriately

Overview: Today’s technology-focused society requires more than just an
understanding of how to use technology, but a working knowledge of what
is appropriate, responsible, and safe behavior in a digital world. In
computer science, understanding extends to the use of: hardware and
software; applications such as email; the Internet and smaller
home/school/business networks; and the use of onsite and offsite storage.
Additionally, appropriate use includes onsite and remote access.

8.1 Follow certain protocols when using technology.

8.2 Identify and address risks and/or unintended consequences associated
with technological tools by considering all scenarios.

8.3 Evaluate technological tools systematically through the use of select
criteria based on the requirements of the task and the capacity of the system.

22

Reading the Standards

23

Grade
Band

Identifier
COMPUTER SCIENCE EDUCATION

STANDARD
CORE CONCEPT Sub-Concept Practice(s)

K-2 1A-CT-A-1
Model daily processes by creating and following
algorithms to complete tasks.

Computational
Thinking

& Programming
Algorithms

Developing & Using
Abstractions

3-5 1B-CT-A-1
Compare and refine multiple algorithms for the
same task and determine which is more
appropriate to complete the task.

Computational
Thinking

& Programming
Algorithms

• Recognizing & Defining
Computational Problems

• Testing & Refining
Computational Artifacts

6-8 2-CT-A-1
Use diagrams and/or pseudocode to plan, analyze,
solve and/or code complex problems as
algorithms.

Computational
Thinking

& Programming
Algorithms

Developing & Using
Abstractions

9-12 3-CT-A-1
Create computational artifacts that use
algorithms to solve computational problems by
leveraging prior knowledge and personal interests.

Computational
Thinking

& Programming
Algorithms

Creating Computational
Artifacts

K-2 1A-CT-V-1 Model real-world data and how it is stored.
Computational

Thinking
& Programming

Variables
Creating Computational
Artifacts

3-5 1B-CT-V-1 Create programs that use variables
Computational

Thinking
& Programming

Variables
Creating Computational
Artifacts

6-8 2-CT-V-1
Create clearly named variables that represent
different data. Perform operations on data stored
in variables.

Computational
Thinking

& Programming
Variables

Creating Computational
Artifacts

9-12 3-CT-V-1
Explain the role of a variable within a program,
and the scope in which its name and value can be
used.

Computational
Thinking

& Programming
Variables

Developing & Using
Abstractions

K-2 1A-CT-D-1
Model real-world objects and/or processes that
can be represented by various types of data.

Computational
Thinking

& Programming

Data Structures and Data
Types

Developing & Using
Abstractions

3-5 1B-CT-D-1
Identify real-world examples of data structures
and data types.

Computational
Thinking

& Programming

Data Structures and Data
Types

Recognizing & Defining
Computational Problems

6-8 2-CT-D-1
Organize data into an appropriate data structure in
a program.

Computational
Thinking

& Programming

Data Structures and Data
Types

Creating Computational
Artifacts

9-12 3-CT-D-1 Create a program that processes a collection of data.
Computational

Thinking
& Programming

Data Structures and Data
Types

Creating Computational
Artifacts

K-2 1A-CT-C-1
Develop simple programs with sequences and simple
repetitions

Computational
Thinking

& Programming
Control Structures

Creating Computational
Artifacts

3-5 1B-CT-C-1
Create programs that combine sequences, loops,
conditionals, and/or events.

Computational
Thinking

& Programming
Control Structures

Creating Computational
Artifacts

6-8 2-CT-C-1
Design programs that combine control structures,
including nested loops and compound conditionals.

Computational
Thinking

& Programming
Control Structures

Creating Computational
Artifacts

9-12 3-CT-C-1

Create and justify the selection of specific control
structures when tradeoffs involve code organization,
readability, and program performance and explain
the benefits and drawbacks of choices made.

Computational
Thinking

& Programming
Control Structures

Creating Computational
Artifacts

K-2 1A-CT-M-1 Decompose a task into a set of smaller tasks.
Computational

Thinking
& Programming

Modularity
Recognizing & Defining
Computational Problems

3-5 1B-CT-M-1
Continually decompose problems into smaller
subtasks until each subtask is a manageable set of
basic operations.

Computational
Thinking

& Programming
Modularity

Recognizing & Defining
Computational Problems

3-5 1B-CT-M-2
Create computational artifacts by incorporating
existing modules into one’s own work to solve
a problem.

Computational
Thinking

& Programming
Modularity

• Developing & Using
Abstractions

• Creating Computational
Artifacts

6-8 2-CT-M-1
Decompose computational problems to facilitate the
design and implementation of programs.

Computational
Thinking

& Programming
Modularity

• Recognizing & Defining
Computational Problems

• Creating Computational
Artifacts

6-8 2-CT-M-2
Create procedures with parameters to organize code
and make it easier to reuse.

Computational
Thinking

& Programming
Modularity

Developing & Using
Abstractions

9-12 3-CT-M-1
Identify existing computational artifacts that can
be used for the subtasks of a decomposed problem.

Computational
Thinking

& Programming
Modularity

Recognizing & Defining
Computational Problems

9-12 3-CT-M-2
Create computational artifacts by incorporating pre-
defined procedures, self-defined procedures and
external artifacts.

Computational
Thinking

& Programming
Modularity

Creating Computational
Artifacts

K-2 1A-CT-CD-1
Develop a plan that describes what a computational
artifact should look like and how it should perform.

Computational
Thinking

& Programming
Computational Design

• Creating Computational
Artifacts

• Communicating About
Computing

K-2 1A-CT-CD-2
Identify a task that includes sequences and simple
loops

Computational
Thinking

& Programming
Computational Design

Testing & Refining
Computational Artifacts

3-5 1B-CT-CD-1
Use an iterative process to plan the development
of a computational artifact by including others’
perspectives and considering user preferences.

Computational
Thinking

& Programming
Computational Design

• Fostering An Inclusive
Computing Culture

• Creating Computational
Artifacts

3-5 1B-CT-CD-2
Debug errors in an algorithm or program that
includes sequences and simple loops.

Computational
Thinking

& Programming
Computational Design

Testing & Refining
Computational Artifacts

3-5 1B-CT-CD-3
Describe steps taken and choices made during the
process of creating a computational artifact.

Computational
Thinking

& Programming
Computational Design

Communicating About
Computing

6-8 2-CT-CD-1
Seek and incorporate feedback from team members
and users to refine a solution that meets user needs.

Computational
Thinking

& Programming
Computational Design

• Fostering An Inclusive
Computing Culture

• Collaborating Around
Computing

6-8 2-CT-CD-2
Test and debug a program to ensure it runs as
intended.

Computational
Thinking

& Programming
Computational Design

Testing & Refining
Computational Artifacts

6-8 2-CT-CD-3
Describe choices made during development of
computational artifacts.

Computational
Thinking

& Programming
Computational Design

Communicating About
Computing

9-12 3-CT-CD-1
Systematically design and implement computational
artifacts for targeted audiences by incorporating
feedback from users.

Computational
Thinking

& Programming
Computational Design

Creating Computational
Artifacts

9-12 3-CT-CD-2
Systematically test and refine programs using a
range of test cases.

Computational
Thinking

& Programming
Computational Design

Testing & Refining
Computational Artifacts

9-12 3-CT-CD-3
Document computational artifacts in order to make
them easier to follow, test, and debug.

Computational
Thinking

& Programming
Computational Design

Communicating About
Computing

K-2 1A-CSN-H-1
Identify the inputs and outputs of a computer
system.

Computing
Systems

& Networks

Human-Computer
Interfaces

Communicating About
Computing

3-5 1B-CSN-H-1
Describe how people interact with the various parts
of computing systems to accomplish tasks.

Computing
Systems

& Networks

Human-Computer
Interfaces

Communicating About
Computing

6-8 2-CSN-H-1
Identify improvements to the design of computing
devices, based on an analysis of how users interact
with the devices.

Computing
Systems

& Networks

Human-Computer
Interfaces

Fostering An Inclusive
Computing Culture

9-12 3-CSN-H-1

Analyze a computing system and explain how
abstractions simplify the underlying implementation
details embedded in everyday objects

.

Computing
Systems

& Networks

Human-Computer
Interfaces

Developing & Using
Abstractions

K-2 1A-CSN-HS-1
Use appropriate terminology in identifying and
describing the function of common physical
components of computing systems (hardware).

Computing
Systems

& Networks
Hardware and Software

Communicating About
Computing

3-5 1B-CSN-HS-1
Model how computer hardware and software work
together as a system to accomplish tasks.

Computing
Systems

& Networks
Hardware and Software

Developing & Using
Abstractions

6-8 2-CSN-HS-1
Design projects that combine hardware and software
components to collect and use data to perform a
function.

Computing
Systems

& Networks
Hardware and Software

Creating Computational
Artifacts

9-12 3-CSN-HS-1
Compare levels of abstraction and interactions
between application software, system software, and
hardware layers.

Computing
Systems

& Networks
Hardware and Software

Developing & Using
Abstractions

K-2 1A-CSN-T-1
Describe basic hardware and software problems
using appropriate terminology.

Computing
Systems

& Networks
Troubleshooting

• Testing & Refining
Computational Artifacts

• Communicating About
Computing

3-5 1B-CSN-T-1
Determine potential solutions to solve simple
hardware and software problems using common
troubleshooting strategies.

Computing
Systems

& Networks
Troubleshooting

Testing & Refining
Computational Artifacts

6-8 2-CSN-T-1
Identify and fix problems with computing devices
and their components using a systematic
troubleshooting method or guide.

Computing
Systems

& Networks
Troubleshooting

Testing & Refining
Computational Artifacts

9-12 3-CSN-T-1
Develop and communicate troubleshooting
strategies others can use to identify and fix errors.

Computing
Systems

& Networks
Troubleshooting

Testing & Refining
Computational Artifacts

K-2 1A-CSN-N-1
Describe the Internet as a place to share and find
information.

Computing
Systems

& Networks

Networks and the
Internet

Communicating About
Computing

3-5 1B-CSN-N-1

Model how information is broken down into
smaller pieces of data, transmitted as packets
through multiple devices over networks and the
Internet, and reassembled at the destination.

Computing
Systems

& Networks

Networks and the
Internet

Developing & Using
Abstractions

6-8 2-CSN-N-1
Model the role of protocols in transmitting data
across networks and the Internet.

Computing
Systems

& Networks

Networks and the
Internet

Developing & Using
Abstractions

9-12 3-CSN-N-1
Identify the various elements of a network and
describe how they function and interact to
transfer information.

Computing
Systems

& Networks

Networks and the
Internet

Communicating About
Computing

K-2 1A-CY-R-1
Keep login and personal information private, and
log off of devices appropriately.

Cybersecurity Risks
Using Technology
Appropriately

3-5 1B-CY-R-1
Describe the risks of sharing personal information,
on websites or other public forums.

Cybersecurity Risks
Using Technology
Appropriately

3-5 1B-CY-R-2
Describe ways personal information can be
obtained digitally.

Cybersecurity Risks
Using Technology
Appropriately

3-5 1B-CY-R-3
Describe the risks of others using one’s personal
resources or devices.

Cybersecurity Risks
Using Technology
Appropriately

6-8 2-CY-R-1
Describe tradeoffs between allowing information to
be public and keeping information private and
secure.

Cybersecurity Risks
Using Technology
Appropriately

6-8 2-CY-R-2
Describe social engineering attacks and the potential
risks associated with them.

Cybersecurity Risks
Using Technology
Appropriately

6-8 2-CY-R-3 Describe risks of using free and open services. Cybersecurity Risks
Using Technology
Appropriately

9-12 3-CY-R-1
Explain the privacy concerns related to the collection
and generation of data through automated processes
that may not be evident to users.

Cybersecurity Risks
Using Technology
Appropriately

9-12 3-CY-R-2
Analyze an existing or proposed application to
identify the potential ways it could be used to obtain
sensitive information.

Cybersecurity Risks

• Recognizing & Defining
Computational Problems

• Using Technology
Appropriately

9-12 3-CY-R-3
Explain how the digital security of an organization
may be affected by the actions of its employees.

Cybersecurity Risks
Using Technology
Appropriately

K-2 1A-CY-S-1 Recognize basic digital security features. Cybersecurity Safeguards
Using Technology
Appropriately

3-5 1B-CY-S-1
Explain individual actions that protect personal
electronic information and devices.

Cybersecurity Safeguards
Using Technology
Appropriately

6-8 2-CY-S-1
Explain physical and digital security measures that
protect electronic information.

Cybersecurity Safeguards
Using Technology
Appropriately

6-8 2-CY-S-2
Demonstrate how multiple methods of encryption
provide secure transmission of information.

Cybersecurity Safeguards
Using Technology
Appropriately

9-12 3-CY-S-1
Recommend security measures to address various
scenarios based on factors such as efficiency,
feasibility, and ethical impacts.

Cybersecurity Safeguards
Using Technology
Appropriately

9-12 3-CY-S-2
Explain tradeoffs when selecting and implementing
cybersecurity recommendations.

Cybersecurity Safeguards
Using Technology
Appropriately

K-2 1A-CY-RP-1
Identify situations with applications and devices
that should be reported to a responsible adult.

Cybersecurity Response
Using Technology
Appropriately

3-5 1B-CY-RP-1
Identify and describe unusual data or behaviors of
applications and devices that should be reported to
a responsible adult.

Cybersecurity Response
Using Technology
Appropriately

6-8 2-CY-RP-1
Describe which actions to take and not to take
when an application or device reports a problem
or behaves unexpectedly.

Cybersecurity Response
Using Technology
Appropriately

9-12 3-CY-RP-1
Describe the appropriate actions to take in response
to detected security breaches.

Cybersecurity Response
Using Technology
Appropriately

K-2 1A-DA-CVT-1 Collect and present the same data in multiple formats. Data & Analysis
Collection, Visualization,

Transformation

• Developing & Using
Abstractions

• Communicating About
Computing

3-5 1B-DA-CVT-1
Organize and present collected data to highlight
relationships and support a claim.

Data & Analysis
Collection, Visualization,

Transformation

Developing & Using
Abstractions

Communicating About
Computing

6-8 2-DA-CVT-1
Collect data using computational tools or online
sources and transform the data to make it more
useful and reliable.

Data & Analysis
Collection, Visualization,

Transformation
Testing & Refining
Computational Artifacts

9-12 3-DA-CVT-1
Select appropriate data-collection tools and
presentation techniques for different types of
data.

Data & Analysis
Collection, Visualization,

Transformation

• Developing & Using
Abstraction

• Communicating About
Computing

K-2 1A-DA-IM-1
Identify and describe patterns in data presentations,
such as charts or graphs, to make predictions.

Data & Analysis Inferences and Models
Developing & Using
Abstractions

3-5 1B-DA-IM-1
Use data to highlight or propose cause-and-effect
relationships, predict outcomes, or communicate
an idea.

Data & Analysis Inferences and Models

• Creating Computational
Artifacts

• Communicating About
Computing

6-8 2-DA-IM-1
Create and refine computational models based on
generated or gathered data.

Data & Analysis Inferences and Models

• Developing & Using
Abstraction

• Creating Computational
Artifacts

• Testing & Refining
Computational Artifacts

6-8 2-DA-IM-2
Discuss potential visible biases that could exist in
a dataset and how these biases could affect
analysis conclusions.

Data & Analysis Inferences and Models

• Fostering An Inclusive
Computing Culture

• Communicating About
Computing

9-12 3-DA-IM-1
Create computational models that represent the
relationships among different elements of data
collected from a phenomenon or process.

Data & Analysis Inferences and Models

• Developing & Using
Abstraction

• Creating Computational
Artifacts

9-12 3-DA-IM-2
Discuss potential hidden biases that could be
introduced while collecting a dataset and how
these biases could affect analysis conclusions.

Data & Analysis Inferences and Models

• Fostering An Inclusive
Computing Culture

• Communicating About
Computing

9-12 3-DA-IM-3
Evaluate the ability of models and simulations to test
and support the refinement of hypotheses.

Data & Analysis Inferences and Models

• Developing & Using
Abstraction

• Testing & Refining
Computational Artifacts

K-2 1A-DA-ST-1
Identify data as information that is stored by
software.

Data & Analysis Storage
Developing & Using
Abstractions

3-5 1B-DA-ST-1
Store, copy, search, retrieve, modify, and delete data
using a computing device.

Data & Analysis Storage

• Collaborating Around
Computing

• Recognizing & Defining
Computational Problems

6-8 2-DA-ST-1
Store, retrieve, and share data to collaborate, using
a cloud-based system.

Data & Analysis Storage

• Collaborating Around
Computing

• Creating Computational
Artifacts

6-8 2-DA-ST-2
Describe various low-level data transformations and
identify which result in a loss of information

Data & Analysis Storage
Developing & Using
Abstractions

9-12 3-DA-ST-1
Explain tradeoffs between storing data locally or in
central, cloud-based systems.

Data & Analysis Storage

• Collaborating Around
Computing

• Creating Computational
Artifacts

9-12 3-DA-ST-2
Translate data for various real-world phenomena,
such as characters, numbers, and images, into bits.

Data & Analysis Storage
Developing & Using
Abstractions

K-2 1A-DL-CU-1 Use software tools to create simple digital artifacts Digital Literacy Creation and Use
Using Technology
Appropriately

3-5 1B-DL-CU-1
Use software tools to create and share multimedia
artifacts

Digital Literacy Creation and Use
Using Technology
Appropriately

6-8 2-DL-CU-1
Use software tools to create artifacts that engage
users over time

Digital Literacy Creation and Use
Using Technology
Appropriately

9-12 3-DL-CU-1
Select appropriate software tools or resources
to create a complex artifact or solve a problem.

Digital Literacy Creation and Use
Using Technology
Appropriately

K-2 1A-DL-SDI-1 Conduct basic digital searches. Digital Literacy
Searching Digital

Information
Using Technology
Appropriately

3-5 1B-DL-SDI-1
Conduct and refine multi-criteria searches over digital
information.

Digital Literacy
Searching Digital

Information
Using Technology
Appropriately

6-8 2-DL-SDI-1
Conduct searches over multiple types of digital
information.

Digital Literacy
Searching Digital

Information
Using Technology
Appropriately

9-12 3-DL-SDI-1

Decompose a complex problem into multiple questions,
identify which can be explored through digital sources,
and synthesize query results using a variety of software
tools.

Digital Literacy
Searching Digital

Information
Using Technology
Appropriately

K-2 1A-DL-US-1
Describe basic differences between humans and
computers for performing computational tasks.

Digital Literacy
Understanding Software

Tools
Using Technology
Appropriately

3-5 1B-DL-US-1
Describe the different high-level tasks that are common
to software tools that students use.

Digital Literacy
Understanding Software

Tools
Using Technology
Appropriately

6-8 2-DL-US-1
Describe the different formats of software components that
support common tasks in software tools.

Digital Literacy
Understanding Software

Tools
Using Technology
Appropriately

9-12 3-DL-US-1
Describe different kinds of computations that software
tools perform to tailor a system to individual users.

Digital Literacy
Understanding Software

Tools
Using Technology
Appropriately

K-2 1A-RC-CU-1
Compare and contrast how individuals live and work
before and after the implementation or adoption of
new computing technology.

Responsible
Computing &

Society
Culture

Recognizing & Defining
Computational Problems

3-5 1B-RC-CU-1

Compare and contrast computing technologies that
have changed the world, and express how those
technologies influence, and are influenced by,
cultural practices.

Responsible
Computing &

Society
Culture

Recognizing & Defining
Computational Problems

3-5 1B-RC-CU-2
Identify ways to improve the accessibility and usability
of technology products for the diverse needs and wants
of users.

Responsible
Computing &

Society
Culture

Fostering An Inclusive
Computing Culture

6-8 2-RC-CU-1
Compare and contrast tradeoffs associated with
computing technologies that affect people’s everyday
activities and career options.

Responsible
Computing &

Society
Culture

Communicating About
Computing

6-8 2-RC-CU-2
Discuss issues of bias and accessibility in the design
of existing technologies.

Responsible
Computing &

Society
Culture

Fostering An Inclusive
Computing Culture

9-12 3-RC-CU-1
Evaluate the ways computing impacts personal, ethical,
social, economic, and cultural practices.

Responsible
Computing &

Society
Culture

Fostering An Inclusive
Computing Culture

9-12 3-RC-CU-2
Design and analyze computational artifacts to reduce
bias and equity deficits.

Responsible
Computing &

Society
Culture

Fostering An Inclusive
Computing Culture

Testing & Refining
Computational Artifacts

9-12 3-RC-CU-3
Evaluate the impact of equity, access, and influence
on the distribution of computing resources in a global
society.

Responsible
Computing &

Society
Culture

Fostering An Inclusive
Computing Culture

K-2 1A-RC-SLE-1 Discuss ownership and attribution of digital artifacts.
Responsible

Computing &
Society

Safety, Law & Ethics
Communicating About
Computing

3-5 1B-RC-SLE-1
Incorporate public domain or creative commons media
into a digital artifact, and refrain from copying or
using material created by others without permission.

Responsible
Computing &

Society
Safety, Law & Ethics

Communicating About
Computing

6-8 2-RC-SLE-1
Discuss how laws control use and access to
intellectual property, and mandate broad access to
information technologies.

Responsible
Computing &

Society
Safety, Law & Ethics

Communicating About
Computing

9-12 3-RC-SLE-1
Evaluate the impact of intellectual property laws
on the use of digital information

Responsible
Computing &

Society
Safety, Law & Ethics

Communicating About
Computing

9-12 3-RC-SLE-2
Evaluate the social and economic implications
of privacy and free speech in the context of safety,
law, or ethics.

Responsible
Computing &

Society
Safety, Law & Ethics

Communicating About
Computing

K-2 1A-RC-SI-1
Work respectfully and responsibly with others
online.

Responsible
Computing &

Society
Social Interactions

Collaborating Around
Computing

3-5 1B-RC-SI-1
Seek diverse perspectives for the purpose of
improving computational artifacts.

Responsible
Computing &

Society
Social Interactions

Fostering An Inclusive
Computing Culture

6-8 2-RC-SI-1
Collaborate and strategize with many online
contributors when creating a computational or
digital artifact.

Responsible
Computing &

Society
Social Interactions

• Collaborating Around
Computing

• Creating Computational
Artifacts

9-12 3-RC-SI-1
Use tools and methods for collaboration on a
project to increase connectivity between people in
different cultures and career fields.

Responsible
Computing &

Society
Social Interactions

Collaborating Around
Computing

Appendix A

D
at
a
St
ru

ct
ur
es

&
D
at
a
Ty

pe
s

Model real-world objects and/or processes that
can be represented by various types of data.

Students should be able to represent physical
objects and their attributes as written data.
For example, students could use thumbs
up/down as representations of yes/no, use arrows
when writing algorithms to represent direction,
or encode and decode words using numbers,
pictographs, or other symbols to represent letters
or words.

Practice(s): 4.4

Identify real-world examples of data structures
and data types.

Data structures hold multiple pieces of data about
one thing. Examples of data structures are a list of
planets and their diameters, or a phone contact with
the first name, last name, and phone number of a
person. Each piece of data has a data type, such as
a diameter being a number, and a name being a
string of characters. Students should be able to
describe how data is grouped for an association
with an entity in either the real world or in
a computational artifact, and the type of that data.
For example, students could describe the data
structures and data types in an online game that
has several characters.

Practices(s): 3.1

Organize data into an appropriate data structure
in a program.

Students should be able to identify the components of
data in a given computational problem, determine the
type of each component, and propose a structural
organization for those data. For example, students
could represent characters in a game with a data type
that has a name, picture, and position, and could
represent the collection of characters on the screen
as a program list of that data type.

Practice(s): 5.1

Create a program that processes a collection of data.

Programs often process collections of data, such as the
collection of song titles in a playlist, or a collection of
all sprites on the screen. Students should be able to
organize multiple data items of the same type into a
program data structure (such as a list or array) and
write a program that computes a result about that
collection. For example, students could check to see
if any two sprites in a program list or array of sprites
have collided on the screen.

Practice(s): 5.2

C
on

tr
ol

St
ru

ct
ur
es

Develop simple programs with sequences and
simple repetitions.

Programming control structures specify the order
in which instructions are executed within a
program. Sequences are the order of instructions
in a program. For example, if dialogue is not
sequenced correctly when programming a simple
animated story, the story will not make sense.
If the commands to program a robot are not in
the correct order, the robot will not complete
the desired task. Repetition constructs (which
vary across languages but include loops) allow
for performing operations multiple times. For
example, students could model repetitions for
handwashing by chanting "rub your hands, rub
your hands....rub your hands," then replacing
that with "rub your hands ten times."

Practice(s): 5.2

Create programs that combine sequences,
repetitions, conditionals, and/or events.

Control structures specify the order in which
instructions are executed within a program and can
be combined to support the creation of more
complex programs. Events allow portions of
a program to run based on a specific
interaction with the program, such as the user
clicking the mouse. Students should be able
to create a program using events, conditionals,
and repetitions. For example, students could
write a program to explain the water cycle
and when a specific component is clicked
(event), the program would show information
about that part of the water cycle. Conditionals
allow for the execution of a portion of code in
a program when a certain condition is true.
For example, students could write a math game
that asks a multiplication question and then uses
a conditional to check whether or not the answer
that was entered is correct. An example of a
combined program would be a math quiz program
that loops through multiple questions each with
a conditional to check for the right answer.

Practice(s): 5.2

Design programs that combine control
structures, including nested repetitions and
compound conditionals.

Control structures can be combined in many ways.
Nested repetitions consist of operations that are
repeated within other repeated operations.
Compound conditionals combine two or more
conditions in a logical relationship (e.g., using
AND, OR, and NOT), and nesting conditionals
within one another allows the result of one
conditional to lead to another. For example,
when programming an interactive story,
students could repeatedly check whether a
character has a key and is touching the door
before unlocking the door.

Practice(s): 5.1, 5.2

Create and justify the selection of specific control
structures when tradeoffs involve code organization,
readability, and program performance and explain
the benefits and drawbacks of choices made.

A programmer has choices about what control
structures to use. Students should be able to choose
good control structures and describe why they chose
them. Readability refers to how clear the program is
to other programmers. The discussion of
performance is limited to a theoretical understanding
of execution time and storage requirements; a
quantitative analysis is not expected. For
example, the students could explain why using a
repetition construct is preferable to writing (nearly)
identical code multiple times. Another example is
that students could program with series of if-else
statements for a complex condition, and describe
how this differs in execution and readability than
a similar series of if statements (without "else"
clauses) for that complex condition.

Practice(s): 5.2

2

Decompose a task into a set of smaller tasks.

Decomposition is the act of breaking down tasks
into simpler tasks. Students should be able to list
steps for a particular task. For example, students
could describe the tasks needed to get ready to go
home from school.

Practice(s): 3.2

Continually decompose problems into smaller
subtasks until each subtask is a manageable set
of basic operations.

Students should break problems into hierarchies of
subtasks, each of which in turn decomposes into
other subtasks or individual steps. For example,
students could plan a party by separating the task
into subtasks such as inviting guests, getting party
favors, planning games, and preparing food. The
inviting guest subtask could be broken into its own
subtasks of determining a guest list, writing
invitations, and sending invitations - where each
of these subtasks is a manageable set of
basic operations a person knows how to do such
as write and send an email with the invitation.

Practice(s): 3.2

Decompose computational problems to facilitate
the design and implementation of programs.

Decomposition facilitates aspects of program
development by allowing students to focus on one
piece at a time (e.g., getting input from the user,
processing the data, and displaying the result to the
user). Decomposition also enables different
students to work on different parts at the same time.
Students should be able to decompose a
computational problem into subtasks that facilitate
the use of appropriate programming language
constructs that reflect the subtasks of the problem
solution. For example, students could match
subtasks in their problem decomposition
to procedures that they will program in a
programming language.

Practice(s): 3.3, 5.1

Identify existing computational artifacts that can be
used for the subtasks of a decomposed problem.

Students should be able to take a problem that they
decomposed to subtasks and identify existing
computational solutions to the subtask. For example,
students could find a library of procedures to do
data visualization and use those procedures to display
data in their program.

Practice(s): 3.2

M
od

ul
ar
ity

No K-12 standard.

Create computational artifacts by incorporating
existing modules into one’s own work to solve
a problem.

Students should be able to combine existing
computational artifacts into their own
computational artifact. For example, students
could combine pictures and text into a meme
picture or create a program using the
existing instructions and built-in functions of a
programming language/environment.

Practice(s): 4.2, 5.3

Create procedures with parameters to organize
code and make it easier to reuse.

Procedures and/or functions can be used multiple
times within a program to repeat groups of
instructions.Students should be able to name the
procedures appropriately to match their function
and be able to define parameters that create different
outputs for a wide range of inputs. For example, all
student could create a procedure to draw circles
of different sizes by adding a radius
parameter.

Practice(s): 4.1, 4.3

Create computational artifacts by incorporating
pre-defined procedures, self-defined procedures
and external artifacts.

Computational artifacts can be created by combining
and modifying existing external artifacts or by
developing new artifacts. Interacting modules, each
with a specific role but coordinated for a common
overall purpose, allow for better management of
complex tasks. Students should be able identify
existing external modules that they can use, create
modules that don’t have a good existing solution,
and combine these modules to create a
computational artifact. For example, students
could create an original web site and use
open-source JavaScript libraries to expand its
functionality. As another example, students
could create their own modules to clean and
process specific data, and then use existing modules
from an external library to display

Practice(s): 5.2, 5.3

3

Develop a plan that describes what a
computational artifact should look like and
how it should perform.

Creating a plan for what an artifact should
like and do clarifies the steps that will be
needed to create it and can be used to check
if it is correct. Students should be able to

lookcomplete a planning process with the
teacher’s assistance. For example, students
could create a planning document such as a
story map, a storyboard, or a sequential
graphic organizer to illustrate the program.

Practice(s): 5.1, 7.2

Use an iterative process to plan the
development of a computational artifact
by including others’ perspectives and
considering user preferences.

Planning is an important part of the iterative
process of program development. Students
should be able to outline key features, time
and resource constraints, and user expectations.
For example, students could document a plan
using storyboards, flowcharts, pseudocode, or
user-interface sketches.

Practice(s): 1.1, 5.1

Seek and incorporate feedback from team
members and users to refine a solution that
meets user needs.

Development teams employ user-centered
design to create solutions (e.g., programs and
devices) that support the needs of end users,
such as an application that allows people with
speech difficulties to translate hard-to-understand
pronunciation into understandable language.
For example, students could begin to seek
diverse perspectives throughout the design
process to improve their computational artifacts
by focusing on usability, accessibility,
age-appropriate content, respectful language,
user perspective, pronoun use, color contrast,
and ease of use.

Practice(s): 1.1, 2.3

Systematically design and implement computational
artifacts for targeted audiences by incorporating
feedback from users.

Students should be able to follow a systematic process
that includes feedback from broad audiences on their
computational artifact. For example, students could
create a user satisfaction survey, identify distribution
methods that could yield feedback from a diverse
audience on the usability and effectiveness of their
website and document the process of incorporating
feedback.

Practice(s): 5.1

C
om

pu
ta
tio

na
lD

es
ig
n

Identify a task that includes sequences and
simple loops.

Students should be able to implement a simple
algorithm, determine if it is incorrect, and fix
errors. For example one student could direct
another student from a start location to an end
location by holding up arrows. If the second
student fails to get to the end location, the
directing student should determine where the
mistake occurred, and correct the mistake.

Practice(s): 6.2

Debug errors in an algorithm or program
that includes sequences and simple loops.

Algorithms or programs may not always work
correctly. Students should be able to use various
strategies, such as following the algorithm in a
step-by-step manner, changing the sequence
of the steps, and/or using trial and error to fix
problems in algorithms and programs. For
example, students could check their onscreen
characters to see if they are colliding because
of too many repetitions.

Practice(s): 6.2

Test and debug a program to ensure it runs as
intended.

As programs are developed, they should be
continuously tested to ensure they run as intended.
If not, errors should be identified and fixed.
Students should also be able to successfully debug
simple errors in programs created by others. For
example, students could review programs
intentionally created with errors to identify the
problem and determine the fix.

Practice(s): 6.1, 6.2

Systematically test and refine programs using a
range of test cases.

Test cases and use cases are created and analyzed to
better meet the needs of users and to evaluate whether
programs function as intended. Students should be
able to recognize that testing is a deliberate process
that is iterative, systematic, and proactive. For
example, students could begin to test programs
by considering potential errors, such as what will
happen if a user enters invalid inputs (e.g., negative
numbers and 0 instead of positive numbers).

Practice(s): 6.1

4

C
om

pu
ta
tio

na
lD

es
ig
n

No K-12 standard.yyyyyyyyyyyyyyyyyyyyi

Describe steps taken and choices made during
the process of creating a computational
artifact.

Students should be able to talk or write, using
appropriate terminology, about the goals and
expected outcomes of the computational artifacts
that they create and the choices that they made.
For example, students could describe their work
using a notebook of designs, coding journals,
discussions with a teacher, class presentations, or
blogs.

Practice(s): 7.2

Describe choices made during development of
computational artifacts.

People communicate about their code to help
others understand and use their programs.
Students should be able to explain their design
choices to demonstrate an understanding of their
work. For example, students could include these
explanations as in-line code comments for
collaborators and assessors, or as part of a
summative presentation, such as a code
walk- through or coding journal.

Practice(s): 7.2

Document computational artifacts in order to make
them easier to follow, test, and debug.

Documentation allows creators and others to more easily
use and understand a program. Students should provide
documentation for end users that explain their artifacts,
how they are used, and why they act the way they do.
For example, students could provide a project overview,
design rationale and clear user instructions. They should
communicate their process using design documents,
flowcharts, and presentations.

Practice(s): 7.2

5

COMPUTING SYSTEMS AND NETWORKS
Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12

H
um

an
-C

om
pu

te
r
In
te
ra
ct
io
n

Identify the inputs and outputs of a
computer system.

There are many ways to exchange
information with a computer. Students
should be able to identify the components
of a computer system that help people
input information and the parts that
produce a desired output. For example,
students could use a digital keyboard to
input letters and symbols or press play
on a video player to start a video, or drag
a digital object from one location to another.

Practice(s): 7.2

Describe how people interact with the
various parts of computing systems
to accomplish tasks.

Computing devices often depend on human
interactions to trigger particular actions. A
keyboard input or a mouse click may cause
a change in information displayed on a screen.
Students should understand that computers are
programmed to produce certain outputs based
on particular inputs, and should be able to
describe how people and devices interact,
using appropriate terminology. For example,
students could describe all of the actions
needed to play their favorite video game or
to use their favorite app.

Practice(s): 7.2

Identify improvements to the design
of computing devices, based on an analysis
of how users interact with the devices.

The study of human–computer interaction (HCI)
can improve the design of both hardware and
software of devices. For example, an assistive
device may include a microphone (hardware sensor)
that converts spoken words to written text.
Students should be able to understand that devices
can be designed for a variety of purposes, including
accessibility, ergonomics, and learnability. For
example,students could make recommendations
for improvements to existing devices (e.g., a
laptop, smartphone, or tablet), software
(applications), or they could design their own
component or software interface (e.g., create
their own controllers).

Practice(s): 1.1

Analyze a computing system and explain how
abstractions simplify the underlying implementation
details embedded in everyday objects.

Computing devices are often integrated with other
systems, including biological, mechanical, and social
systems. Examples are: a medical device can be
embedded inside a person to monitor and regulate; an
assistive listening device can filter out certain
frequencies and amplify others; a monitoring device
inside a motor vehicle can track a person’s driving
patterns and habits; and a facial recognition device can
be integrated into a security system to identify a person.
Students should be able to describe (but not create) an
integrated or embedded systems. For example, students
could select an embedded device such as a car stereo,
identify the types of data (radio station presets,
volume level) and procedures (increase volume,
store/recall saved station, mute button), and explain how
the implementation details are hidden from the user.

Practice(s): 4.1

H
ar
dw

ar
e
&

So
ftw

ar
e

Use appropriate terminology in identifying
and describing the function of common
physical components of computing systems
(hardware).

A computing system is composed of hardware
and software. Hardware consists of physical
components. Students should be able to identify
and describe the function of external hardware,
such as desktop computers, laptop computers, tablet
devices, monitors, keyboards, mice, and printers.
For example, students could label and match
components with their descriptions.

Practice(s): 7.2

Model how computer hardware and software
work together as a system to accomplish
tasks.

Both hardware and software are needed to
accomplish tasks with a computer. Students should
recognize the basic elements of a computer system,
including input, output, processor, sensors, and
storage. For example, students could draw a model
(on paper or digitally), program an animation of the
model, or describe it through body movements or
role playing.

Practice(s): 4.4

Design projects that combine hardware and
software components to collect and use data to
perform a function.

Collecting and exchanging data involves input,
output, storage, and processing. Students should
be able to select the hardware and software
components for their project designs by
considering factors such as functionality, cost,
size, speed, accessibility, and aesthetics. For
example, students could design a mobile
application that includes accelerometer, GPS,
and speech recognition

Practice(s): 5.1

Compare levels of abstraction and interactions
between application software,
system software, and hardware layers.

At its most basic level, a computer is composed of
physical hardware and electrical impulses with
multiple layers of software built upon the
hardware. System software manages a computing
device’s resources so that software can interact
with hardware. For example, text-editing software
interacts with the operating system to receive input
from the keyboard, convert the input to bits for
storage, and interpret the bits as readable text to
display on the monitor. Students should be able to
recognize that system software is used on many
different types of devices, such as smart TVs,
assistive devices, virtual components, cloud
components, and drones. For example, students could
explain the progression from voltage to binary signal
to logic gates to adders and so on.

Practice(s): 4.1

6

Tr
ou

bl
es
ho

ot
in
g

Describe basic hardware and software problems
using appropriate terminology.

Problems with computing systems have different
causes. Students should be able to communicate
a problem with appropriate terminology, although
they do not need to understand the causes. For
example, students could notify a teacher when an
application or program is not working as expected,
such as when a device will not turn on or there is
no sound.

Practice(s): 6.2, 7.2

Determine potential solutions to solve
simple hardware and software problems
using common troubleshooting strategies.

Although computing systems may vary, common
troubleshooting strategies can be used on all of
them. Students should be able to identify solutions
to basic problems, such as the device not
responding, no power, no network connection,
application crashing, no sound, or password entry
not working. For example, when errors occur,
students could use various strategies, such as
rebooting the device, checking for power, checking
network availability, closing and reopening an
application, making sure speakers are turned on
or headphones are plugged in, and making sure that
the caps lock key is not on, in an attempt to solve
these problems.

Practice(s): 6.2

Identify and fix problems with computing devices
and their components using a systematic
troubleshooting method or guide.

Since a computing device may interact with
interconnected devices within a system, problems
may not be due to the specific computing device
itself but to devices connected to it. Students should
be able to use a structured process – similar to the
checklist used by aircraft pilots – to troubleshoot
problems with computing systems, and ensure that
potential solutions are not overlooked. For example,
students could follow a troubleshooting flow diagram,
make changes to software to see if hardware will
work, check connections and settings, or change
working components.

Practice(s): 6.2

Develop and communicate troubleshooting
strategies others can use to identify and fix
errors.

Troubleshooting complex problems involves
the use of multiple sources when researching,
evaluating, and implementing potential solutions.
Troubleshooting also relies on experience, such
as when people recognize that a problem is
similar to one they have seen before or adapt
solutions that have worked in the past. Students
should be able to identify complex
troubleshooting strategies, which include
resolving connectivity problems, adjusting
system configurations and settings, ensuring
hardware and software compatibility, and
transferring data from one device to another.
For example, students could create a flowchart,
a job aid for a help desk employee, or an expert
system (artificial intelligence).

Practice(s): 6.2

N
et
w
or
ks

&
th
e
In
te
rn

et

Describe the Internet is a place to share and find
information.

The Internet transmits information between
computers. Students should understand that
information accessed on the Internet can be stored
and shared on computers around the world. Students
should be able to identify the value of a network like
the Internet to find information and access other
services. For example, students could look for
information that comes from a remote location.

Practice(s): 7.2

Model how information is broken down into
smaller pieces of data, transmitted as packets
through multiple devices over networks and
the Internet, and reassembled at the destination.

Data are sent and received over physical cables and
wires or wireless paths. They are broken down into
smaller pieces (packets) which are sent independently
and reassembled at the destination. Students should
be able to recognize different types of networks for
specific purposes (i.e. the school’s local network
versus the Internet). For example, students could
demonstrate their understanding of this flow of data
by drawing a model of the way packets are
transmitted, programming an animation to show how
packets are transmitted, or demonstrating this through
body movements or role playing activities.

Practice(s): 4.4

Model the role of protocols in transmitting data
across networks and the Internet.

Protocols are rules that define how messages
between computers are sent. Students should
understand the purpose of protocols and how they
enable secure and errorless communication as well
as model protocols that enable the fastest path, deal
with missing information, and deliver sensitive data
securely. For example, students could devise a plan
for resending lost information or for interpreting a
picture that has missing pieces.

Practice(s): 4.4

Identify the various elements of a network
and describe how they function and interact
to transfer information.

Large-scale coordination occurs among many
different machines across multiple paths every
time a web page is opened or an image is
viewed online. Students should be able to
explain the path of communication from their
device to a website and back using the network
topology (servers, routers, switches, DNS, ISP,
etc.). For example, students could use online
network simulators to experiment with these
factors. experiment with these factors.

Practice(s): 7.2

7

CYBERSECURITY
Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12

Keep login and personal information private,
and log off of devices appropriately.

Computing technology can help or hurt people.
Students should recognize and avoid harmful
behaviors, such as sharing private information
and staying logged on public devices. For example,
students could identify what information might be
private about a photograph, and demonstrate that
they know how to log out of any accounts they use
for classroom work.

Practice(s): 8.1

Describe the risks of sharing personal
information, on websites or other
public forums.

Security attacks often start with information that is
publicly available online. Students should be able
to recognize that sharing information about family
members and friends can put them at risk. For
example, students could create a list of potential
risks of sharing persona information in real life,
where personal information includes identifying
information such as birthdates as well as
information about current locations.

Practice(s): 8.2

Describe tradeoffs between allowing
information to be public and keeping
information private and secure.

Sharing information online can help establish,
maintain, and strengthen connections between
people. It allows artists and designers, for
example, to display their work and reach a broad
audience. People must decide which
information to share and which to protect.
Students should recognize that different
situations require different safeguards and
that not everyone will agree on what to share.
For example, students could list the pros and cons
of sharing pictures and information about their
activities on social media or a school directory.

Practice(s): 8.2

Explain the privacy concerns related to the
collection and generation of data through
automated processes that may not be evident
to users.

Data can be collected and aggregated across millions
of people, even when they are not actively engaging
with or physically near the data collection devices.
Students should be able to identify privacy concerns
related to the automated and non-evident collection
and recognize that all information will be part of big
data. For example, students could analyze the benefits
and consequences of social media sites mining an
account even when the user is not online. Other
examples include surveillance video used in a store
to track customers for security, or information about
purchasing habits, or the monitoring of road traffic
to change signals in real-time to improve road
efficiency without drivers being aware.

Practice(s): 8.3R
isk

s

No K-2 standard.

Describe ways personal information can be
obtained digitally.

Websites use various methods to gather information
about individuals, families, or friends. Information
may survive online even after the owner deletes it.
Students should be able to recognize ways that data
are gathered online. For example, students could list
ways websites gather data such as by asking
questions, selling products and tracking people’s
website visits.

Practice(s): 8.2

Describe social engineering attacks and
the potential risks associated with them.

Social engineering is based on "tricking" people
into revealing sensitive information. It can be
thwarted by being wary of attacks, such as
phishing and spoofing. Students should be able
to recognize that attacks can come through links
in email, ads on websites, and questions from
other people. For example, students could
describe a potential phishing attack.

Practice(s): 8.2

Analyze an existing or proposed application to
identify the potential ways it could be used to
obtain sensitive information.

Applications gather and store information about users
and their behaviors. The risks an application poses
depends on what information it gathers, where that
information is stored, and who can access that
information. Risks may concern reputational,
financial, or legal issues. Students should be able to
differentiate between methods and devices for
collecting data by the amount of storage required,
level of detail collected, and sampling rates.

Practice(s): 3.1, 8.2, 8.3

8

R
isk

s

No K-2 standard.

Describe the risks of others using one’s
personal resources or devices.

When access to a smartphone, network, or account
is shared, information about the "owner" can be
exposed. Students should be able to discuss potential
consequences to giving friends and acquaintances
access to their devices or accounts. For example,
students could list inappropriate actions that
someone could take if they had access to a
digital folder containing another student’s classwork.

Practice(s): 8.1, 8.2

Describe risks of using free and open services.

Free services often carry less security than paid
services. Students should be able to identify
situations in which they might be using free
services and the corresponding risks. Examples
include using the risk of information theft over
open networks in restaurants, and the risk of
malware installation from sites for streaming
licensed entertainment (e.g., movies or sporting
events). Additionally, certain smartphone or
laptop applications may request permissions that
may compromise personal information. For
example, students could identify certain phone
or laptop applications that request permissions
that may compromise personal information.

Practice(s): 8.2

Explain how the digital security of an
organization may be affected by the actions
of its employees.

Organizations store sensitive, confidential and
proprietary information in their computing systems.
Employees have a responsibility to help protect these
systems and their data. Students should understand
how an employee is an integral part of an
organization’s digital security and how an
individual’s digital inattentiveness can have serious
consequences. For example, students could identify
and describe certain contexts within industry,
military, healthcare, energy, and government
organizations where consequences would be serious.

Practice(s): 8.1

Sa
fe
gu

ar
ds

Recognize basic digital security features.

Devices and software use several mechanisms to
safeguard data. For example, devices have
passcodes. Software tools have password-protected
accounts so that one user cannot see another user’s
data. Websites display a lock icon when they are
using certain common security measures. Students
should be able to recognize whether a device or
software tool offers basic data protection based on
passwords, accounts, and padlock icons. For
example, students could create passwords that
include numbers, upper & lower case letters &
special symbols.

Practice(s): 8.1

Explain individual actions that protect personal
electronic information and devices.

Just as we protect our personal property offline,
we also need to protect our devices and the
information stored on them. Information can be
protected using various security measures. These
measures can be physical and/or digital. Digital
protection should be based on strong personal
authentication (e.g., passwords). Students should
be able to identify these measures and describe
how to use them. For example, students could
describe what makes a password strong and how
to safeguard their passwords, describe what anti-
virus software does and how to keep it updated,
and whether various applications that they use
backup data automatically in the cloud.

Practice(s): 8.1

Explain physical and digital security measures
that protect electronic information.

Information that is stored online is vulnerable to
unwanted access. Physical security measures to
protect data include keeping passwords hidden,
locking doors, making backup copies on external
storage devices, and erasing a storage device before
it is reused. Digital security measures include
secure router admin passwords, using two-factor
authentication, firewalls that limit access to private
networks, installing software updates, using (and
not disabling) malware detectors, and the use of a
protocol such as HTTPS to ensure secure data
transmission. Students should be able to
differentiate between physical and digital security
measures. For example, students could create a
list of security measures for the school and
discuss with the onsite IT professional.

Practice(s): 8.2, 8.3

Recommend security measures to address various
scenarios based on factors such efficiency,
feasibility, and ethical impacts.

Security measures may include physical security
tokens, two-factor authentication, and biometric
verification. Potential security problems, such as
denial-of-service attacks, ransomware, viruses,
worms, spyware, and phishing, exemplify why
sensitive data should be securely stored and
transmitted. The timely and reliable access to data
and information services by authorized users,
referred to as availability, is ensured through
adequate bandwidth, backups, and other measures.
Students should systematically evaluate and
continually re-assess the feasibility of using
computational tools to solve given security
problems or sub problems. For example, students
could use a cost-benefit analysis to evaluate
(eventually including more factors in their
evaluations) such as how efficiency affects feasibility
or whether a proposed approach raises ethical
concerns.

Practice(s): 8.3

9

Sa
fe
gu

ar
ds

No K-2 standard No 3-5 standard.

Demonstrate how multiple methods of encryption
provide secure transmission of information.

Encryption can be as simple as letter substitution
or as complicated as modern methods used to
secure networks and the Internet. Students should
encode and decode messages using a variety
of encryption methods, and should understand the
different levels of complexity used to hide or secure
information. For example, students could secure
messages using methods such as Caesar ciphers
or steganography (i.e., hiding messages inside a
picture or other data). They can also model more
complicated methods, such as public key
encryption,through unplugged activities.

Practice(s): 8.2

Explain tradeoffs when selecting and
implementing cybersecurity recommendations.

Network security depends on a combination of
hardware, software, and practices that control access
to data and systems. The needs of users and the
sensitivity of data determine the level of security
implemented. Every security measure involves
tradeoffs between the accessibility and security of
the system. Students should be able to describe,
justify, and document choices they make using
terminology appropriate for the intended audience
and purpose. For example, students could debate
issues from the perspective of diverse audiences,
including individuals, corporations, privacy
advocates, security experts, and government.

Practice(s): 8.3

R
es
po

ns
e

Identify situations applications and devices that
should be reported to a responsible adult.

Losing a device or accidentally sharing a
password exposes people and their accounts to
information theft. Students should understand
which kinds of losses to report to a parent, teacher,
or other trusted adult. (Instructions should follow
any appropriate district or school policies that are
intended for young students.)

Practice(s): 8.1

Identify and describe unusual data or behaviors
of applications and devices that should be
reported to a responsible adult.

Devices or applications can behave in unexpected
ways when a security incident occurs. An unusual
screen might open asking for a password, phone
number, or permission to install another program.
Email attachments can contain malicious software.
Students should be able to recognize simple forms
of unusual behavior in common applications,
including data or links that might constitute a
risk, and understand which behaviors to report to
a parent, teacher, or other trusted adult.
(Instructions should follow any appropriate district
or school policies that are intended for young
students.) For example, students could review
sample email messages and identify features of
each that suggest suspicious behavior.

Practice(s): 8.1

Describe which actions to take and not to take
when an application or device reports a problem
or behaves unexpectedly.

Users can take defensive actions when devices,
applications, or online acquaintances behave
in unexpected ways. Disconnecting a device from
a network, changing passwords, and removing
or blocking people on social media applications
are each appropriate in some situations. Students
should be able to recognize basic situations in
which to take or not take various defensive
actions. For example, students could describe
benefits and risks to each action (such as the loss
of forensic data if a device is completely turned
off, or that requests to change passwords should
only be followed when they come from an
appropriate authority). Students should be able
to describe both basic forms of social engineering
attacks and how to decide which links or
documents to open.

Practice(s): 8.2

Describe the appropriate actions to take in
response to detected security breaches.

Employees may observe activity such as malware
scans, modifications to documents, or unusual access
to documents by other employees when an
organization suffers a security breach. Breaches
also occur on a personal level with credit cards
or social media accounts. Students should be able
to recognize different kinds of breaches that they
might detect as employees or in their personal
lives. For example, students could discuss sample
organizational response protocols, sample state
and federal policies on data loss and incidence
response, and explain their responsibilities to
organizations in responding to breaches. In terms
of personal information, students could discuss
what sorts of information individuals should
gather in advance as evidence of data theft, loss,
or fabrication and identify the appropriate people
(such as banks, the police, or acquaintances) to
whom to report incidents.

Practice(s): 8.3

10

DATA & ANALYSIS
Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12

C
ol
le
ct
io
n,

V
isu

al
iz
at
io
n,

&
Tr

an
sf
or
m
at
io
n

Collect and present the same data in multiple
formats.

The collection and use of data about the world
around us is a routine part of life and influences
how people live. Different presentations of data
highlight different aspects of the data. Students
should be able to collect and tally simple data,
then present it two or more ways using different
representations. For example, students could
count the number of blocks by color, or survey
classmates on their favorite foods, then present
these data with a bar graph and pictograph.

Practice(s): 4.4, 7.2

Organize and present collected data to
highlight relationships and support a claim.

Raw data are sets of observations that have little
meaning on their own. Data are often sorted or
grouped to focus on particular questions.
Organizing data can make interpreting and
communicating them to others easier. Students
should sort the same data set in multiple ways,
presenting each in an appropriate format. For
example, a data set of sports teams could be sorted
by wins, points scored, or points allowed, with a
bar graph presented for each sorting.

Practice(s): 4.1, 7.1

Collect data using computational tools or online
sources and transform the data to make it more
useful and reliable.

For analysis to be reliable, data need to be in a
consistent format, free of critical errors or noise, and
organized to make key trends visible. Students should
be able to collect data from devices or online sources
and identify noise, errors, or inconsistencies that
could exist in these data. For example, an audio
sensor meant to record applause volume may collect
extraneous sound during the first few seconds of
positioning the sensor, and these parts of recorded
sound data should be excluded in analysis. Students
could download a spreadsheet containing
teacher-crafted dataset from a website and check for
missing or duplicate entries.

Practice(s): 6.2, 6.3

Select appropriate data-collection tools and
presentation techniques for different types of
data.

Different kinds of data are best collected and
presented using different methods and formats.
Students should be able to distinguish between
discrete and dynamic events, choose appropriate
methods or tools for gathering each type of data,
and choose appropriate representations for
aggregating or presenting such data. For example,
a tally counter could be used to compare the
number of people attending a concert on different
days, with data presented in a bar chart, whereas
a light sensor could be used to detect change in
illumination during the course of a cloudy
versus sunny day, with data plotted as two trends
along the same time axis.

Practice(s): 4.1, 7.2

In
fe
re
nc

e
an

d
M
od

el
s

Identify and describe patterns in data,
presentations such as charts or graphs,
to make predictions

Data can be used to make inferences or
predictions about the world. Students should
be able to interpret simple graphs or charts.
For example, students could analyze a chart
representing what classmates ate for breakfast for
several days, then make a prediction about how
many student will eat a particular breakfast
on another day.

Practice(s): 4.1

Use data to highlight or propose cause-and-effect
relationships, predict outcomes, or communicate
an idea.

The accuracy of data analysis is related to how
realistically data are represented. Inferences or
predictions based on data are less likely to be
accurate if data are not sufficient, or if the data are
incorrect in some way. Students should be able to
refer to data when forming hypotheses and
communicating an idea. They should recognize
when data are in sufficient quantity, or relevant.
For example, students could record the temperature
at noon each day as a basis to show that temperatures
are higher in certain months of the year, but these
data would be insufficient measurements if only
taken once a month. Data about precipitation would
not be relevant to this prediction about temperature.

Practice(s): 5.1, 7.1

Create and refine computational models based on
generated or gathered data.

A computational model may be a programmed
simulation of events or a mathematical representation
of how different objects relate. Students should be
able to create and refine a model by considering
which data points are relevant, how data points relate
to each other, and if the data are accurate. Models
can be created in simulation tools, spreadsheets, or
on paper. For example, students may make a prediction
about how far a ball will travel based on a table of data
related to the height and angle of a track. The students
could then test and refine their model by comparing
predicted versus actual results and considering
whether other factors are relevant (e.g., size and
mass of the ball).

Practice(s): 4.4, 5.3, 6.1

Create computational models that represent
the relationships among different elements
of data collected from a phenomenon or
process.

Computational models make predictions about
processes or phenomena based on selected data
and features.The amount, quality, and diversity
of data and the features chosen can affect the
quality of a model and therefore our ability to
understand a system. Predictions or inferences
are tested to validate models. Students should
model phenomena as systems, with rules
governing the interactions within the system,
then analyze and evaluate these models against
real-world observations. For example, students
could create a simple producer–consumer
ecosystem model, or a traffic-pattern prediction
model, using a programming or simulation tool.

Practice(s): 4.4, 5.1, 5.2

11

No K-2 standard.yyyyyyyyyyyyyyyyyyyyyyyyyy No 3-5 standard. yyyyyyyyyyyyyyyyyyyyyyyyyyyy

Discuss potential visible biases that could exist
in a dataset and how these biases could affect
analysis conclusions.

Datasets may not be representative of the population
they are being used to study. Students should identify
potential biases in the components of a dataset and
discuss whether those biases could adversely affect
specific conclusions drawn from the dataset. For
example, students could analyze survey data to see if
key populations are underrepresented.

Practice(s): 1.3 , 7.1

Discuss potential hidden biases that could be
introduced while collecting a dataset and how
these biases could affect analysis conclusions.

Datasets may have hidden biases based on how
they were collected. Students should identify
potential biases that are not directly reflected in
the dataset, but that could exist based on how the
data were collected. Students should also discuss
whether those biases could adversely affect specific
conclusions drawn from the dataset. For example,
students could analyze data about public works
funding for one neighborhood and discuss whether
the analysis should predict funding for another
neighborhood in the same city.

Practice: 1.1, 1.3, 7.1

In
fe
re
nc

es
&

M
od

el
s

No K-2 standard. No 3-5 standard. No 6-8 standard.

Evaluate the ability of models and simulations to
test and support the refinement of hypotheses.

Models must be evaluated to determine whether
they are appropriate and reliable. A model may
omit information that is essential to answering
a question, or yield results that seem inconsistent
with expectations or data from other sources.
Students should learn how to test models on data
for which results are known, articulate questions
they could ask to validate a model, give detailed
explanations of where a model might be inaccurate,
and make suggestions on how to modify existing
models to improve their reliability.For example,
students could analyze the accuracy of a weather
model if predictions of patterns of rain are
inconsistent with recent historical data.
Inconsistencies with real data could be used to
modify the model, or refine a hypothesis about
why rain data is inconsistent with recent historical
data.

Practice(s): 4.4, 6.3

12

Identify data as information that is stored by
software.

All information stored and processed by a
computing device is referred to as data. Data can
exist in different forms, such as images, text
documents,audio files, video files, software
programs, or applications. Storing data digitally
makes it easier to create and share copies of the
data. Students should be able to identify what
kinds of information is stored by various
software tools that they use and give examples
of when they might want to share data with
others. For example, a document stores text and
pictures, while sharing the document lets
teachers mark comments on it.

Practice(s): 4.2

Store, copy, search, retrieve, modify, and delete
data using a computing device.

Data can be stored, copied, searched, retrieved,
modified, and deleted, and can be stored either on
local or remote devices. Students should be able to
perform each of these operations within the
relevant software applications that they use, and
understand when a digital tool is manipulating data.
Students should also understand that their privileges
to manipulate data may depend on who owns the
data. For example, students can talk about how they
carry out these operations on email or text messages,
and who is allowed to execute these operations on
their own accounts.

Practice(s): 2.4, 3.2

Store, retrieve, and share data to collaborate, using
a cloud-based system.

Cloud-based applications enable multiple people to
update data from multiple locations. This enables backup
systems to protect data as well as collaboration on
documents and processes. Students should create and
modify information using cloud-based systems. For
example, students could contribute to a dataset recorded
in a shared spreadsheet, take an online class for
certification, or contribute regional images to a national
database of images.

Practice(s): 2.4, 5.3

Explain tradeoffs between storing data locally
or in central, cloud-based systems.

Local and cloud-based storage of data have
different affordances with respect to
accessibility, cost, speed, security, and integrity.
Students should be able to discuss these tradeoffs
in the context of decisions about managing
specific forms of data. For example, students
could discuss benefits and limitations to both
local and cloud-based storage of medical records
by a doctor’s office.

Practice(s): 2.4, 5.1

St
or
ag
e

No K-2 standard. No 3-5 standard.

Describe various low-level data transformations and
identify which result in a loss of information

Data representations occur at multiple levels of
abstraction, from the physical storage of bits to the
arrangement of information into organized formats (e.g.
tables). Some data representations compress data to save
space, which results in a loss of information. Students
should be able to represent the same data in multiple
ways, discussing whether each representation loses
any information. For example, students could
represent the same color using both RGB values,
hex codes, and greyscale values, discussing potential loss
of hue. Students could experiment with different
audio-compression formats, listening for when
they can detect differences in sound quality.

Practice: 4.1, 4.3

Translate data for various real-world
phenomena, such as characters, numbers, and
images, into bits.

Computers ultimately store data as sequences of
binary digits (bits) of 0s and 1s. Letter
characters, numbers, and images can be
represented as numbers, which in turn can be
converted to bits. Students should understand
why computers use bit-level representations, and
should be able to convert multiple types of
basic data into bit-level form. For example,
students could translate a 4-digit number into
bits, a two-word phrase into ASCII or Unicode,
and several image pixels into sequences of
hexadecimal color codes

Practice(s): 4.1

13

DIGITAL LITERACY
Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12

C
re
at
io
n
&

U
se

Use software tools to create simple digital artifacts.

People perform many common operations when
creating artifacts with software tools. Students should
be able to operate and interact with software tools to
create an artifact. For example, students could write
a text document that includes an image.

Practice(s): 8.1

Use software tools to create and share multimedia
artifacts.

When creating digital artifacts, people use local,
networked and online tools. Students should be able
to create, manipulate, and publish multimedia artifacts
using software tools from multiple environments. For
example, students might create a video with a local
tool, then upload the video to an online folder or blog
for sharing with friends and family.

Practice(s): 8.1

Use software tools to create artifacts that engage
users over time

Many artifacts are meant to be viewed either in
multiple stages (like slideshows) or over multiple
visits (like blogs). Students should understand
how different kinds of artifacts can engage users
over time, and create appropriate artifacts that do so.
Students should also describe challenges in keeping
such artifacts up to date. For example, students
could create a multimedia slideshow showing the
history of a local issue, or create a blog with
updates on a topic of interest, debating policies
for updating older blog posts in the presence of
permalinks. .

Practice(s): 8.1

Select appropriate software tools
or resources to create a complex artifact
or solve a problem.

People use multiple kinds of software tools when
creating interactive artifacts or solving problems.
Students should select software tools, artifact
styles, and resources based on their efficiency and
effectiveness for a given purpose, project or
assignment, and be able to justify their choices.
For example, students might combine data from
citizen science databases, news archives and
image databases to create a website that presents
presents dynamically-updating information.

Practice(s): 8.1, 8.3

Se
ar
ch
in
g
D
ig
ita

lI
nf
or
m
at
io
n

Conduct basic digital searches.

Digital data repositories often provide ways for
users to search for information that interests them.
Students should be able to conduct basic keyword
searches to find information in digital resources.
For example, students could search for books on
specific topics in a library catalog or on the Internet.

Practice(s): 8.1

Conduct and refine multi-criteria searches over
digital information.

Queries over digital information often consider
multiple constraints. Students should be able to
perform searches that involve multiple criteria,
whether through search tools with separate fields
or by using "and" or "or" operations within queries.
Students should also be able to refine results of
one query with additional constraints. For
example, students could search for local events
that occur within a specific date range in a website
with local event listings, then restrict the results to
music concerts.

Practice(s): 8.1

Conduct searches over multiple types of digital
information.

Digital information comes in forms other than
textual documents. Students should be able to
search for other forms of data, such as images or
audio files, paying attention to Copyright and
Fair Use on discovered resources. For example,
students could search for graphics in a specific
file format to include in a presentation, while
establishing that the licensing on the graphic
allows such use.

Practice(s): 8.1, 8.2

Decompose a complex problem into
multiple questions, identify which can be
explored through digital sources, and
synthesize query results using a variety of
software tools.

Realistic problems are answered by combining
the results of several more focused questions,
some of which can be answered through digital
information. Students should be able to break
down a problem into focused questions, query
digital sources when appropriate, synthesize
results into an answer to the original problem,
while properly identifying and citing sources.
For example, students could ask how weather
might affect crime statistics for a chosen city
or region, search for geo-tagged crime incident
data and weather data, then synthesize the data
to find and present an answer to an information
problem.

Practice(s): 8.1, 8.3

14

U
nd

er
st
an

di
ng

So
ftw

ar
e
To

ol
s

Describe basic differences between humans and
computers for performing computational tasks.

Both humans and digital devices can solve problems.
Students should recognize that computers and
digital technology assist humans in performing
tasks or making digital computations, and that
humans have opinions, while digital devices do not.
For example, students could use a sort function to
organize a database of images by color value (tool),
then discuss which one of the images is their favorite
(human)

Practice(s): 8.1

Describe the different high-level tasks that are
common to software tools that students use.

Many software tools are built around a common
collection of tasks, such as gathering input from
users, storing data, presenting data, protecting data,
performing some computation over data, or
connecting to other resources or services to perform
a computation. Students should be able to describe
these tasks and their associated data for at least two
different kinds of software that they use on a regular
basis. For example, students could describe the data
managed by an online document-editing program and
how the program controls access to documents.
Students could explain how a software tool works to
others, such as the meaning behind common icons
such as the gearwheel or a padlock in a browser search
field or operating system.

Practice(s): 8.1, 8.3

Describe the different formats of software
components that support common tasks in
software tools

Software tools are built out of standard components
such as databases, file systems, network
connections and sensors. Students should be able
to explain what various components do in general,
and how these components are used in specific
software systems that are relevant to the student.
For example, students should be able to explain
that a photo-sharing website has a database with
information on users, a file system of
photographs, and uses the network to transfer
photos taken on a user’s smartphone to the
application.

Practice(s): 8.1, 8.3

Describe different kinds of computations that
software tools perform to tailor a system
to individual users.

Data is at the heart of software tools: tools
manage data, but also use data and
computations over data to alter how different
users experience a system. Students should be
able to explain how software tools use data to
customize software to individual users. For
example, students might explain what user
data and searches are used to determine which
advertisements are displayed on a news or
entertainment website, and why different users
see different advertisements or search
results for the same search.

Practice(s): 8.1, 8.3

15

RESPONSIBLE COMPUTING IN SOCIETY
Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12

Compare and contrast how individuals live
and work before and after the implementation
or adoption of new computing technology.

Computing technology has positively and negatively
changed the way people live and work. In the past,
if students wanted to read about a topic, they needed
access to a library or any repository to find resources.
Today, students can find information on the Internet
about a topic or they can download e-books about it
directly to a device. Students should be able to
describe the type of information found on the Internet.
For example, students could go to the library and with
teacher or librarian assistance, find books on a
particular topic and then find and compare similar
information online.

Practice(s): 3.1

Compare and contrast computing technologies
that have changed the world, and express how
those technologies influence, and are influenced
by, cultural practices.

New computing technology is created and existing
technologies are modified for many reasons, such as
increased benefits (e.g., Internet search
recommendations), decreased risks (e.g., autonomous
vehicles), and social efficiencies (smartphone
applications). With guidance from their teacher,
students should be able to discuss topics that relate to
the history of technology and the changes around them
that are driven by technology. For example, students
could discuss current events that affect them such as
robotics, wireless Internet, mobile computing devices,
GPS systems, wearable computing, or how social media
has influenced social and political movements, changed
or affected the practices of cultural traditions and
customs.

Practice(s): 3.1

Compare and contrast tradeoffs associated
with computing technologies that affect
people’s everyday activities and career
options.

Advancements in computer technology are
neither entirely positive nor negative.
However, the ways that people use computing
technologies have tradeoffs. Students should
consider cultural impacts, including privacy,
free speech, communication, and automation.
For example, students could identify tradeoffs
with driverless cars - they can increase
convenience and reduce accidents, but they
are also susceptible to hacking.

Practice(s): 7.2

Evaluate the ways computing impacts personal,
ethical, social, economic, and cultural practices.

Computing may change (improve or harm) or
maintain societal practices. Minimal exposure
to computing, limited access to education, and
lack of training opportunities magnify systemic
problems in society. Students should be able to
evaluate the accessibility of a product to a broad
group of end users, such as people who lack
ubiquitous access to the Internet or who have
disabilities. For example, students could identify
potential bias during the development and design
process to maximize accessibility in website or
digital product implementation.

Practice(s): 1.2

C
ul
tu
re

No K-2 standard.

Identify ways to improve the accessibility and
usability of technology products for the diverse
needs and wants of users.

The development and modification of computing
technology are driven by people’s needs and wants
and can affect groups differently. Students should
be able to identify the needs and wants of diverse
end users and purposefully consider potential
perspectives of users with different backgrounds,
ability levels, points of view, and disabilities. For
example, students could consider using both speech
and text when they convey information in a game.
They could also vary the options or styles in
programs they create, knowing that not everyone
shares their own tastes.

Practice(s): 1.2

Discuss issues of bias and accessibility
in the design of existing technologies.

Students should test and discuss the usability
of various technology tools (e.g., applications,
games, and devices) with the teacher’s
guidance. Facial recognition software, for
example, that works better for lighter skin tones
was likely developed with a homogeneous
testing group and could be improved by
sampling a more diverse population. Students
should be able to recognize that increasing
usability benefits others in addition to the
targeted group. For example, students could
discuss the different types of users who
would benefit from being able to adjust font
sizes and color contrast ratios.

Practice(s): 1.2

Design and analyze computational artifacts to
reduce bias and equity deficits.

Biases include incorrect assumptions developers
have made about their user base. Equity deficits
include minimal exposure to computing, access
to education, and training opportunities. Students
should begin to identify potential bias during the
design process to maximize accessibility in
product design and become aware of
professionally accepted accessibility standards
to evaluate computational artifacts for accessibility.

Practice(s): 1.2, 6.3

16

C
ul
tu
re

No K-2 standard. No 3-5 standard. No 6-8 standard.

Evaluate the impact of equity, access, and
influence on the distribution of computing
resources in a global society.

Resources, such as computers, mobile devices and
network connectivity require money to acquire and
training to use effectively. The lack of financial
resources and educators skilled in computing in
many regions of the world, such as inner cities
and rural areas, places individuals at a
disadvantage in a society that values technology.
Students should be able to discuss the ways this
digital divide places individuals at a disadvantage.
For example, students could research how better
access to information and/or resources affects a
population.

Practice(s) : 1.2

Sa
fe
ty
,L

aw
,&

Et
hi
cs

Discuss ownership and attribution of digital
artifacts.

Most digital artifacts have owners. Students
should understand the importance of giving
credit to media creators/owners when using their
work. For example, students could create a text
document with digital images and identify the
online source of their images.

Practice(s): 7.3

Incorporate public domain or creative commons
media into a digital artifact, and refrain from
copying or using material created by others
without permission.

Ethical complications arise from the opportunities
provided by computing. The ease of sending and
receiving copies of media on the Internet, such as
video, photos, and music, creates the opportunity
for unauthorized use, such as online piracy, and
disregard of copyrights. Students should consider
the licenses on computational artifacts that they
wish to use. For example, the license on a
downloaded image or audio file may have
restrictions that prohibit modification, require
attribution, forbid commercial use, or prohibit use
entirely.

Practice(s): 7.3

Discuss how laws control use and access to
intellectual property, and mandate broad access
to information technologies.

Copyright laws and licensing protect owners of
intellectual property. Additionally, laws help
ensure that people with various disabilities can access
computing technologies. Students should be able to
explain the potential consequences of violating
intellectual property laws or licensing agreements, and
sending inappropriate content. For example, students
could discuss how creative commons licenses for images,
restrictions on taking photos in museums, or how laws
drive school policies on appropriate content sharing
between students.

Practice(s): 7.3

Evaluate the impact of intellectual property laws
on the use of digital information.

Intellectual property laws can have mixed effects.
They are meant to protect creation and invention,
but can also restrict access and usage of digital
objects that permit leveraging an invention for
wider use. The same tools that are used to enforce
copyright laws can be used to censor media. For
example, laws enacted to reduce online piracy can
restrict file sharing in ways that limit public access
to information. Students should be aware of
intellectual property laws and their impact on
using or publishing digital artifacts, as well as
commercial endeavors. For example, students could
research and explain how music streaming
applications compensate artists, or how patents are
meant to protect the interests of innovators, yet
can be abused in litigation focused on financial
gain.

Practice(s): 7.3

17

Sa
fe
ty
,L

aw
,&

Et
hi
cs

No K-2 standard. No 3-5 standard. No 6-8 standard.

Evaluate the social and economic implications of
privacy and free speech in the context of safety,
law, or ethics.

Laws govern many aspects of computing, such as
privacy, data, property, information access, and
digital identity. International differences in laws
and ethics have implications for computing.
Students should understand how privacy laws
impact education, workplace and recreation. For
example, students could review case studies or
current events which present an ethical dilemma
when an individual’s right to privacy is at odds
with the safety, security, or well-being of a
community.

Practice(s): 7.3

So
ci
al

In
te
ra
ct
io
ns

Work respectfully and responsibly with others
online.

Online communication facilitates positive
interactions, such as sharing ideas with many
people, but the public and anonymous nature
of online communication also allows intimidating
and inappropriate behavior in the form of
cyberbullying. Students should be able to provide
feedback to others on their work in a kind and
respectful manner and tell an adult if others are
sharing things they should not share or are treating
others in an unkind or disrespectful manner. For
example, as students share their work in blogs or
other online collaborative spaces (such as the
local school department domain), they will avoid
sharing information that is inappropriate or would
violate theirs or another’s privacy.

Practice(s): 2.1

Seek diverse perspectives for the purpose of
improving computational artifacts.

Computing facilitates collaboration and sharing
of ideas. Students should benefit from diverse
perspectives facilitated by digital collaboration.
For example, students could do mutual reviews
of each other’s projects, or seek feedback from
other student groups outside their classroom (at
another grade level, or in another school).
Specifically, and with guidance from their
teacher, students could use video conferencing
tools or other online collaborative spaces, such
as blogs, wikis, forums, or website comments, to
gather feedback from individuals and groups about
programming projects or other digital objects they
create.

Practice(s): 1.1

Collaborate and strategize with many online
contributors when creating a computational or
digital artifact.

Crowdsourcing is gathering services, ideas, or content
from a large group of people, especially from an online
community. It can be done at the local level (e.g.,
classroom or school) or global level (e.g., age-appropriate
online communities for artifact creators). Students should
develop an understanding of soliciting feedback from a
wider audience. For example, a group of students could
collect and combine images or animations from their
community and create a digital mosaic. They could also
solicit feedback from many people by sharing their
digital artifacts with specific online communities
and electronic surveys, then make improvements.

Practice(s): 2.4, 5.2

Use tools and methods for collaboration on a
project to increase connectivity between people
in different cultures and career fields.

Human social structures that support education,
work and communities have been affected by the
ease of communication facilitated by computing.
The increased connectivity between people in
different cultures and in different career fields has
impacted the variety and types of careers that are
possible. Students should be able to explore
different collaborative tools and methods used to
solicit input from team members, classmates, and
others, such as participation in online forums or
compiling survey data from local communities.
For example, students could compare ways
different social media tools could help a team to
research examples and solicit input that helps
solve a community problem.

Practice(s): 2.4

18

Appendix B- Glossary

The glossary includes definitions of terms used in the statements in the standards. Unless
indicated, these definitions were adopted directly from the K-12 Computer Science Framework. As
noted in the Framework, these terms are defined for readers of the framework and are not
necessarily intended to be the definitions or terms that are presented to students.

*denotes revision of definition by Rhode Island Computer Science Education
Standards Committee

**denotes addition of definition by Rhode Island Computer Science Education
Standards Committee

Term Definition

abstraction

(Process): The process of reducing complexity by focusing on the main
idea. By hiding details irrelevant to the question at hand and bringing
together related and useful details, abstraction reduces complexity
and allows one to focus on the problem.

(Product): A new representation of a thing, a system, or a problem that
helpfully reframes a problem by hiding details irrelevant to the
question at hand.[MDESE, 2016]

accessibility

The design of products, devices, services, or environments for people
who experience disabilities. Accessibility standards that are generally
accepted by professional groups include the Web Content Accessibility
Guidelines (WCAG) 2.0 and Accessible Rich Internet Applications
(ARIA) standards. [Wikipedia]

algorithm A step-by-step process to complete a task.

analog

The defining characteristic of data that is represented in a continuous,
physical way. Whereas digital data is a set of individual symbols,
analog data is stored in physical media, such as the surface grooves
on a vinyl record, the magnetic tape of a VCR cassette, or other
non-digital media. [Techopedia]

app
A type of application software designed to run on a mobile device,
such as a smartphone or tablet computer. Also known as a mobile
application. [Techopedia]

57

application **
A combination of software components or programs that enable
users to perform tasks, such as interact with digital artifacts,
databases, and other users.

artifact *
Something made by a human. See computational artifact for
the definition used in computer science.

audience Expected end users of a computational artifact or system.

authentication
The verification of the identity of a person or process.
[FOLDOC]

automate;
automation

Automate: To link disparate systems and software so that they
become self-acting or self-regulation [Ross, 2016]

Automation: The process of automating.

Boolean
A type of data or expression with two possible values: true
and false. [FOLDOC]

bug

An error in a software program. It may cause a program to
unexpectedly quit or behave in an unintended manner.
[Tech Terms]

The process of finding and correcting errors (bugs) is called
debugging. [Wikipedia]

code
Any set of instructions expressed in a programming language.
[MDESE, 2016]

comment
A programmer-readable annotation in the code of a computer
program added to make the code easier to understand. Comments
are generally ignored by machines. [Wikipedia]

complexity
The minimum amount of resources such as memory, time, or
messages, needed to solve a problem or execute an algorithm.
[NIST/DADS]

component
An element of a larger group. Usually, a component provides a
particular service or group of related services. [Tech Terms,
TechTarget]

computational Relating to computers or computing methods.

58

computational
artifact *

An artifact that performs computation over digital information.

computational
thinking *

The human ability to solve problems, design systems, and
understand human behavior, by drawing on the concepts
fundamental to computer science. [Lee,2006]

computer
A machine or device that performs processes, calculations,
and operations based on instructions provided by a software
or hardware program. [Techopedia]

computer
science

The study of computers and algorithmic processes, including
their principles, their hardware and software designs, their
implementation, and their impact on society. [ACM, 2006]

computing
Any goal-oriented activity requiring, benefiting from, or
creating algorithmic processes. [MDESE, 2016]

computing
device

A physical device that uses hardware and software to receive,
process, and output information. Computers, mobile phones,
and computer chips inside appliances are all examples of
computing devices.

computing
system

A collection of one or more computers or computing devices,
together with their hardware and software, integrated for
the purpose of accomplishing shared tasks. Although a
computing system can be limited to a single computer or
computing device, it more commonly refers to a collection of
multiple connected computers, computing devices, and hardware.

conditional

A feature of a programming language that performs different
computations or actions depending on whether a programmer-
specified Boolean condition evaluates to true or false.
[MDESE, 2016]

(A conditional could refer to a conditional statement, conditional
expression, or conditional
construct.)

configuration

(Process): Defining the options that are provided when installing
or modifying hardware and software or the process of creating
the configuration (product). [TechTarget]

(Product): The specific hardware and software details that tell
exactly what the system is made up of, especially in terms of
devices attached, capacity, or capability. [TechTarget]

59

connection
A physical or wireless attachment between multiple computing
systems, computers, or computing devices.

connectivity
A program or device’s ability to link with other programs and
devices. [Webopedia]

control;
control structure

Control: (in general) The power to direct the course of actions.

(In programming): The use of elements of programming code
to direct which actions take place and the order in which they
take place.

Control structure: A programming (code) structure that
implements control. Conditionals and loops are examples of
control structures.

culture;
cultural practices

Culture: A human institution manifested in the learned
behavior of people, including their specific belief systems,
language(s), social relations, technologies, institutions,
organizations, and systems for using and developing
resources. [NCSS, 2013]

Cultural practices: The displays and behaviors of a culture.

cybersecurity
The protection against access to, or alteration of, computing
resources through the use of technology, processes, and
training. [TechTarget]

data

Information that is collected and used for reference or analysis.
Data can be digital or non-digital and can be in many forms,
including numbers, text, show of hands, images, sounds, or video.
[CAS, 2013; Tech Terms]

data structure
A particular way to store and organize data within a computer
program to suit a specific purpose so that it can be accessed
and worked with in appropriate ways. [TechTarget]

data type

A classification of data that is distinguished by its attributes
and the types of operations that can be performed on it. Some
common data types are integer, string, Boolean (true or false),
and floating-point.

debugging
The process of finding and correcting errors (bugs) in programs.
[MDESE, 2016]

60

decompose;
decomposition

Decompose: To break down into components.

Decomposition: Breaking down a problem or system into
components. [MDESE, 2016]

device
A unit of physical hardware that provides one or more computing
functions within a computing system. It can provide input to the
computer, accept output, or both. [Techopedia]

digital
A characteristic of electronic technology that uses discrete values,
generally 0 and 1, to generate, store, and process data. [Techopedia]

digital
artifact **

An artifact that is stored in a digital format.

digital
citizenship

The norms of appropriate, responsible behavior with regard to
the use of technology. [MDESE, 2016]

digital
collaboration**

Any activity that involves the sharing or modifying of artifacts
by multiple users.

efficiency

A measure of the amount of resources an algorithm uses to find
an answer. It is usually expressed in terms of the theoretical
computations, the memory used, the number of messages
passed, the number of disk accesses, etc. [NIST/DADS]

encapsulation
The technique of combining data and the procedures that act on it
to create a type. [FOLDOC]

encryption
The conversion of electronic data into another form, called
ciphertext, which cannot be easily understood by anyone except
authorized parties. [TechTarget]

end user (or user)
A person for whom a hardware or software product is designed
(as distinguished from the developers). [TechTarget]

event

Any identifiable occurrence that has significance for system
hardware or software. User-generated events include keystrokes
and mouse clicks; system-generated events include program
loading and errors. [TechTarget]

event handler A procedure that specifies what should happen when a specific
event occurs.

61

execute;
execution

Execute: To carry out (or “run”) an instruction or set of
instructions (program, app, etc.).

Execution: The process of executing an instruction or set
of instructions. [FOLDOC]

hardware
The physical components that make up a computing system,
computer, or computing device. [MDESE, 2016]

hierarchy
An organizational structure in which items are ranked according
to levels of importance. [TechTarget]

human–computer
interaction (HCI)

The study of how people interact with computers and to what
extent computing systems are or are not developed for successful
interaction with human beings. [TechTarget]

identifier
The user-defined, unique name of a program element (such as a
variable or procedure) in code. An identifier name should indicate
the meaning and usage of the element being named. [Techopedia]

implementation
The process of expressing the design of a solution in a programming
language (code) that can be made to run on a computing device.

inference A conclusion reached on the basis of evidence and reasoning. [Oxford]

input The signals or instructions sent to a computer. [Techopedia]

integrity
The overall completeness, accuracy, and consistency of data.
[Techopedia]

Internet
The global collection of computer networks and their connections,
all using shared protocols to communicate. [CAS, 2013]

iterative
Involving the repeating of a process with the aim of approaching a
desired goal, target, or result. [MDESE, 2016]

loop
A programming structure that repeats a sequence of instructions as long
as a specific condition is true. [Tech Terms]

memory Temporary storage used by computing devices. [MDESE, 2016]

62

model

A representation of some part of a problem or a system.
[MDESE, 2016]

Note: This definition differs from that used in science.

modularity

The characteristic of a software/web application that has been divided
(decomposed) into smaller modules. An application might have several
procedures that are called from inside its main procedure. Existing
procedures could be reused by recombining them in a new application.
[Techopedia]

module
A software component or part of a program that contains one
or more procedures. One or more independently developed modules
make up a program. [Techopedia]

network
A group of computing devices (personal computers, phones, servers,
switches, routers, etc.) connected by cables or wireless media for the
exchange of information and resources.

operation
An action, resulting from a single instruction, changes the state
of data. [Free Dictionary]

operating system **
Software that enables a user to interact with and organize files
and applications in a single machine: distinct from application.

packet The unit of data sent over a network. [Tech Terms]

parameter
A special kind of variable used in a procedure to refer to one
of the pieces of data received as input by the procedure.
[MDESE, 2016]

procedure

An independent code module that fulfills some concrete task
and is referenced within a larger body of program code. The
fundamental role of a procedure is to offer a single point of
reference for some small goal or task that the developer or
programmer can trigger by invoking the procedure itself.
[Techopedia]

In this framework, procedure is used as a general term that
may refer to an actual procedure or a method, function, or
module of any other name by which modules are known in
other programming languages.

process
A series of actions or steps taken to achieve a particular
outcome. [Oxford]

63

Program*;
programming

Program (n): A set of instructions that can be executed
by a computer

Program (v): To produce a program by programming.

Programming: The craft of analyzing problems and
designing, writing, testing, and maintaining programs
to solve them. [MDESE, 2016]

protocol

The special set of rules used by endpoints in a
telecommunication connection when they communicate. Protocols
specify interactions between the communicating entities.
[TechTarget]

prototype
An early approximation of a final product or information
system, often built for demonstration purposes. [TechTarget,
Techopedia]

redundancy
A system design in which a component is duplicated, so if
it fails, there will be a backup. [TechTarget]

reliability
An attribute of any system that consistently produces the same
results, preferably meeting or exceeding its requirements.
[FOLDOC]

remix

The process of creating something new from something old.
Originally, a process that involved music, remixing involves
creating a new version of a program by recombining and
modifying parts of existing programs, and often adding new
pieces, to form new solutions. [Kafai & Burke, 2014]

router
A device or software that determines the path that data
packets travel from source to destination. [TechTarget]

scalability
The capability of a network to handle a growing amount
of work or its potential to be enlarged to accommodate
that growth. [Wikipedia]

security See the definition for cybersecurity.

simulate;
simulation

Simulate: To imitate the operation of a real-world process or
system.

Simulation: Imitation of the operation of a real-world process
or system. [MDESE, 2016]

64

software
Programs that run on a computing system, computer, or other
computing device.

software
tool **

Software that enables creation of digital artifacts, storage of
data, and data formatting.

storage

(Place): A place, usually a device, into which data can be
entered, in which the data can be held, and from which the
data can be retrieved at a later time. [FOLDOC]

(Process): A process through which digital data is saved
within a data storage device by means of computing technology.
Storage is a mechanism that enables a computer to retain data,
either temporarily or permanently. [Techopedia]

string

A sequence of letters, numbers, and/or other symbols. A string
might represent, for example, a name, address, or song title.
Some functions commonly associated with strings are length,
concatenation, and substring. [TechTarget]

structure
A general term used in the framework to discuss the concept
of encapsulation without specifying a particular programming
methodology.

switch
A high-speed device that receives incoming data packets and
redirects them to their destination on a local area network
(LAN). [Techopedia]

system
A collection of elements or components that work together for
a common purpose. [TechTarget] See also the definition for
computing system.

test
case

A set of conditions or variables under which a tester will
determine whether the system being tested satisfies requirements
or works correctly. [STF]

topology

The physical and logical configuration of a network; the
arrangement of a network, including its nodes and connecting
links. A logical topology is the way devices appear connected to
the user. A physical topology is the way they are actually
interconnected with wires and cables. [PCMag]

troubleshooting
A systematic approach to problem solving that is often used to
find and resolve a problem, error, or fault within software or a
computing system. [Techopedia, TechTarget]

65

user **
Anyone interacting with a digital artifact, software tool, program
or application.

variable

A symbolic name that is used to keep track of a value that can
change while a program is running. Variables are not just used
for numbers; they can also hold text, including whole sentences
(strings) or logical values (true or false). A variable has a data
type and is associated with a data storage location; its value is
normally changed during the course of program execution.
[CAS, 2013; Techopedia]

Note: This definition differs from that used in math.

66

Appendix C- Resources

Below are the resources used by the K-12 Computer Science Framework. As noted in the
Framework, some definitions came directly from the sources listed in the glossary, while others
were excerpted or adapted to include content relevant to the framework.

ACM, 2006

A Model Curriculum for K–12 Computer Science

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., &
Verno, A. (2006). A model curriculum for K–12 computer science: Report
of the ACM K–12 task force curriculum commit- tee (2nd ed.).
New York, NY: Association for Computing Machinery.

CAS, 2013

Computing At School’s Computing in the National Curriculum:
A Guide for Primary Teachers

Computing At School. (2013). Computing in the national curriculum:
A guide for primary teachers. Belford, UK: Newnorth Print.
Retrieved from http://www.computingatschool.org.uk/ data/
uploads/CASPrimaryComputing.pdf

College Board, 2016

College Board Advanced Placement® Computer Science Principles

College Board. (2016). AP Computer Science Principles course and
exam description. New York, NY: College Board. Retrieved from

https://secure-media.collegeboard.org/digitalServices/ pdf/ap/
ap-computer-science-principles-course-and- exam-description.pdf

FOLDOC

Free On-Line Dictionary of Computing

Free on-line dictionary of computing. (n.d.).
Retrieved from http://foldoc.org

Free Dictionary

The Free Dictionary

The free dictionary. (n.d.). Retrieved from
http://www.thefreedictionary.com

Kafai & Burke, 2014

Connected Code: Why Children Need to Learn Programming

Kafai, Y., & Burke, Q. (2014). Connected code: Why
children need to learn programming. Cambridge, MA: MIT Press.

67

Lee, 2016

Reclaiming the Roots of CT

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice:
The Voice of K–12 Computer Science Education and Its
Educators, 12(1), 3–4. Retrieved from http://www.csteachers.org/
resource/ resmgr/Voice/csta_voice_03_2016.pdf

MDESE, 2016

Massachusetts Digital Literacy and Computer Science (DL&CS)
Standards

Massachusetts Department of Elementary and Secondary
Education. (2016, June). 2016 Massachusetts digital literacy and
computer science (DLCS) curriculum framework. Malden, MA:
Author. Retrieved from http://www.doe.mass.edu/frameworks/
dlcs.pdf

NCSS, 2013

College, Career & Civic Life (C3) Framework for Social Studies
State Standards

National Council for the Social Studies. (2013). The college, career,
and civic life (C3) framework for social studies state standards:
Guidance for enhancing the rigor of K–12 civics, economics,
geography, and history. Silver Spring, MD: Author. Retrieved from
http://www.socialstudies.org/ system/files/c3/C3-Framework-for-
Social-Studies.pdf

NIST/DADS

National Institute of Science and Technology Dictionary of
Algorithms and Data Structures

Pieterse, V., & Black, P. E. (Eds.). (n.d). Dictionary of algorithms
and data structures. Retrieved from https://xlinux.nist.gov/dads//

Oxford

Oxford Dictionaries

Oxford dictionaries. (n.d.). Retrieved from
http://www.oxforddictionaries.com/us

PCmag

PCmag.com Encyclopedia

PCmag.com encyclopedia. (n.d.). Retrieved from http:
//www.pcmag.com/encyclopedia/ term/46301/logical-
vs-physical-topology

Ross, 2016

What Is Automation

Ross, B. (2016, May 10). What is automation and how
can it improve customer service? Information Age. Retrieved
from http://www.information-age. com/industry/soft- ware/
123461408/what-automation-and- how-can-it-improve-
customer-service

68

STF

Software Testing Fundamentals

Software testing fundamentals. (n.d).
Retrieved from http://softwaretestingfundamentals.com

Tech Terms
Tech Terms

Tech terms computer dictionary. (n.d.). Retrieved from
http://www.techterms.com

Techopedia

Techopedia

Techopedia technology dictionary. (n.d.). Retrieved from
https://www.techopedia.com/ dictionary

TechTarget

TechTarget Network

TechTarget network. (n.d.). Retrieved from http://
www.techtarget.com/network

Webopedia
Webopedia

Webopedia. (n.d.). Retrieved from http://www.webopedia.com

Wikipedia

Wikipedia

Wikipedia: The free encyclopedia. (n.d.). Retrieved from
https://www.wikipedia.org/

69

