

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL

M.EE.N-CN.2.A

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.N-CN.2.a	M.EE.N-CN.2.a	Initial Precursor:
Use the	Use the	Recognize separateness
relation $i^2 = -1$	commutative,	Recognize set
and the	associative,	Recognize subset
commutative,	and distribute	Distal Precursor:
associative,	properties to	Combine sets
and	add, subtract,	Demonstrate the concept of addition
distributive	and multiply	• Combine
properties to	whole	Demonstrate the concept of multiplication
add, subtract,	numbers	Solve repeated addition problems
and multiply		Proximal Precursor:
complex		• Add 1 and 1
numbers		• Add 1 to 2, 3, and/or 4
		• Add within 5
		• Add within 10
		• Add within 20
		• Multiply by 1, 2, 3, 4, 5, and/or 10
		Target:
		 Apply associative property of addition
		Apply commutative property of addition
		• Apply the commutative property of multiplication
		• Apply the associative property of multiplication
		Apply the distributive property
		Successor:
		Explain the associative property of addition
		Explain the commutative property of addition
		• Explain the commutative property of multiplication
		Explain the distributive property
		• Explain the associative property of multiplication

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.N-CN.2.a Use the commutative, associative, and distribute properties to add, subtract, and multiply whole numbers

MATH: HIGH SCHOOL

М.ЕЕ.N-CN.2.В

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.N-CN.2	M.EE.N-CN.2.b	Initial Precursor:
M.N-CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers	M.EE.N-CN.2.b Solve real-world problems involving addition and subtraction of decimals and whole numbers, using models when needed	 Initial Precursor: Recognize set Recognize separateness Distal Precursor: Recognize a unit Explain ten as a composition of ten ones Explain place value for ones and tens Proximal Precursor: Add 2 decimals with digits in the tenths place Subtract 2 decimals with digits in the tenths place Target: Solve word problems involving addition with rational numbers Solve word problems involving subtraction with rational numbers
subtract, and multiply complex numbers	whole numbers, using models when needed	 Explain place value for ones and tens Proximal Precursor: Add 2 decimals with digits in the tenths place Subtract 2 decimals with digits in the ten place Target: Solve word problems involving addition with rational numbers Solve word problems involving subtracti with rational numbers Solve multi-step problems with rational numbers

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.N-CN.2.b Solve real-world problems involving addition and subtraction of decimals, using models when needed

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.N-CN.2.C

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.N-CN.2	M.EE.N-CN.2.c	Initial Precursor:
Use the relation $i^2 = -$	Solve real-world	Recognize separateness
1 and the	problems	Distal Precursor:
commutative,	involving	Recognize a unit
associative, and	multiplication of	• Explain place value for ones and tens
distributive	decimals and	• Explain ten as a composition of ten ones
properties to add,	whole numbers,	Proximal Precursor:
subtract, and	using models	• Multiply 2 decimals with digits in the tenths
multiply complex	when needed	place
numbers		Target:
		 Solve word problems involving
		multiplication with rational numbers
		Successor:
		Solve multi-step problems with rational
		numbers

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.N-CN.2.c Solve real-world problems involving multiplication of decimals and whole numbers, using models when needed

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL

M.EE.N-RN.1

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.N-RN.1	M.EE.N-RN.1	Initial Precursor:
Explain how the	Determine the	Combine
meaning of rational	that is squared	 Combine sets Demonstrate the concept of addition
exponents follows	or cubed	Distal Precursor:
from extending the properties of integer exponents to those		 Explain repeated addition Represent repeated addition with a model Solve repeated addition problems
values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})_3 = 5^{(1/3)_3}$		 Proximal Precursor: Explain product Explain multiplication problems Demonstrate the concept of multiplication Target: Evaluate expressions with whole number exponents
to hold, so $(5^{1/3})^3$ must equal 5		Successor: • Explain perfect cubes • Explain perfect squares

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IPInitial PrecursorSPSupportingDPDistal PrecursorSSuccessor
- PP Proximal Precursor UN Untested
- T Target

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.S-CP.1-5

Grade-Level Standard	DLM Essential	Linkage Levels
	Element	_
M.S-CP.1 Describe events as subsets of a	M.EE.S-CP.1-5	Initial Precursor:
sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"); M.S-CP.2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent; M.S-CP.3 Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B; M.S-CP.4 Construct and interpret two- way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability and independence in everyday language and everyday situations	Identify when events are independent or dependent	 Compare objects for sameness Arrange objects in pairs Contrast objects Distal Precursor: Classify Proximal Precursor: Recognize possible outcomes Explain simple events Recognize impossible outcomes Target: Determine if 2 events are independent or dependent Successor: Explain compound events
everyady steadons		

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL

M.EE.S-IC.1-2

Grade-Level Standard	DLM Essential	Linkage Levels
	Element	
M.S-IC.1 Understand	M.EE.S-IC.1-2	Initial Precursor:
statistics as a process	Determine the	Compare objects for sameness
for making inferences	likelihood of an	 Arrange objects in pairs
about population	event occurring	Distal Precursor:
parameters based on a	when the outcomes	Recognize outcomes of an event
random sample from	are equally likely to	Recognize possible outcomes
that population;	occur	Proximal Precursor:
M.S-IC.2 Decide if a		Recognize sample space
specified model is		Target:
consistent with results from a given data generating process, e.g., using simulation. For example, a model says a spinning coin falls		 Determine theoretical probability of a simple event where all outcomes are equally likely Successor: Determine theoretical probability of simple event where some outcomes
probability 0.5. Would a result of 5 tails in a row cause you to question the model?		are more likely than others

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.S-IC.1-2 Determine the likelihood of an event occurring when the outcomes are equally likely to occur

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL

M.EE.G.CO.1

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.G.CO.1 Know	M.EE.G.CO.1	Initial Precursor:
M.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc	M.EE.G.CO.1 Know the attributes of perpendicular lines, parallel lines, and line segments, angles, and circles	Initial Precursor: • Recognize same • Recognize different • Recognize attribute values Distal Precursor: • Recognize point • Recognize ray • Recognize angle • Recognize right angles Proximal Precursor: • Recognize circles • Recognize parallel lines/line segments • Recognize perpendicular lines/line segments Target:
		 Define circle Explain angle Explain perpendicular lines/line segments Explain parallel lines/line segments Successor: Explain straight angles Explain adjacent angles Explain vertical angles

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.G.CO.1 Know the attributes of perpendicular lines, parallel lines, and line segments, angles, and circles

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.G-CO.4-5

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.G-CO-4 Develop	M.EE.G-CO.4-5	Initial Precursor:
definitions of	Given a	Recognize same
rotations, reflections,	geometric figure	Recognize different
and translations in	and a rotation,	Distal Precursor:
terms of angles,	reflection, or	• Match the same three-dimensional shapes
circles, perpendicular	translation of	with same size and different orientation
lines narallel lines	identify the	Match the same two-dimensional shape
and line segments.	components of	With same sizes and different orientations
MCCOECivon a	the two figures	Proximal Precursor:
	that are	Recognize translation
geometric figure and	congruent	Recognize rotation
a rotation, reflection,	0	Recognize renection
or translation, draw		Recognize congruent ligures
the transformed		Taiget:
figure using, e.g.,		• Explain the relationship between congruent
graph paper, tracing		
paper, or geometry		Use a sequence of transformations to
software. Specify a		describe congruence of 2 given figures
sequence of		
transformations that		
will carry a given		
figure onto another		

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.G-CO.4-5 Given a geometric figure and a rotation, reflection, or translation of that figure, identify the components of the two figures that are congruent

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.G-CO.6-8

Grade-Level Standard	DLM Essential	Linkage Levels
	Element	
M.G-CO.6 Use geometric	M.EE.G-CO.6-8	Initial Precursor:
descriptions of rigid	Identify	Recognize same
motions to transform	corresponding	Recognize different
figures and to predict the	congruent and	Distal Precursor:
effect of a given rigid	similar parts of	Match the same two-dimensional
motion on a given figure;	shapes	shape with different sizes and same
given two figures, use the		orientation
definition of congruence in		Match the same two-dimensional
terms of rigid motions to		shape with same size and same
decide if they are		orientation
congruent; M.G-CO.7 Use		Match the same three-dimensional
the definition of		shape with different size and same
congruence in terms of		orientation
rigid motions to show that		Match the same three-dimensional
two triangles are congruent		shape with same size and same
if and only if corresponding		orientation
pairs of sides and		Proximal Precursor:
corresponding pairs of		Recognize congruent figures
angles are congruent;		Recognize similar figures
M.G-CO.8 Explain how the		Target:
criteria for triangle		Explain congruent figures
congruence (ASA, SAS, and		• Explain similar figures
SSS) follow from the		Successor:
definition of congruence in		Explain the relationship between
terms of rigid motions		congruent figures and transformation
		Explain the relationship between
		similar figures and transformation

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

Key to map codes in upper right corner of node boxes:

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.G-CO.6-8 Identify corresponding congruent and similar parts of shapes

MATH: HIGH SCHOOL

M.EE.G-MG.1-3

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.G-MG.1 Use	M.EE.G-MG.1-3	Initial Precursor:
geometric shapes,	Use properties of	Recognize same
their measures, and	geometric shapes	Recognize different
their properties to	to describe real-	Distal Precursor:
describe objects;	life objects	• Match the same two-dimensional shape with
M.G-MG.2 Apply		same size and same orientation
concepts of density		• Match the same two-dimensional shape with
based on area and		different size and same orientation
volume in modeling		• Match the same three-dimensional shapes
situations		with same size and same orientation
M.G-MG.3 Apply		 Match the same three-dimensional shapes
geometric methods		with different size and same orientation
to solve design		Proximal Precursor:
problems		 Recognize squares, circles, triangles,
		rectangles, cubes, cones, cylinders, and/or
		spheres
		Target:
		 Use geometric shapes to describe objects
		Successor:
		 Use geometric methods to solve design
		problems

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.G-MG.1-3 Use properties of geometric shapes to describe real-life objects

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.G-GPE.7

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.G-GPE.7 Use	M.EE.G-GPE.7	Initial Precursor:
coordinates to	Find perimeters	Recognize attribute values
compute perimeters	and areas of	Distal Precursor:
of polygons and areas	squares and	Recognize measureable attributes
of triangles and	rectangles to	Proximal Precursor:
of thangles and	solve real-world	• Calculate perimeter by adding all the side
rectangles, e.g., using	problems	lengths
the distance formula		Calculate area by counting unit squares
		Target:
		 Solve word problems involving perimeter of polygons
		• Solve word problems involving area of
		 Solve word problems involving area of rectangles
		Successor:
		 Mathematize contextual situation involving perimeter of polygons
		Mathematize contextual situations
		involving area of polygons

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.G-GPE.7 Find perimeters and areas of squares and rectangles to solve real-world problems

MATH: HIGH SCHOOL

M.EE.N-Q.1-3

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.N-Q.1 Use units as a	M.EE.N-Q.1-3	Initial Precursor:
way to understand	Express quantities	 Use perceptual subitizing
problems and to guide	to the appropriate	Distal Precursor:
the solution of multi-	precision of	 Round decimals to any place
step problems; choose	measurement	Proximal Precursor:
and interpret units		 Solve word problems involving
consistently in		multiplication with rational numbers
formulas; choose and		 Solve word problems involving
interpret the scale and		subtraction with rational numbers
the origin in graphs		 Solve word problems involving
and data displays;		addition with rational numbers
M.N-Q.2 Define		Target:
appropriate quantities		• Express numerical answers with a
for the purpose of		degree of precision appropriate for the
descriptive modeling;		problem context
M.N-Q.3 Choose a level		Successor:
of accuracy		 Solve multi-step problems with
appropriate to		rational numbers
limitations on		
measurement when		
reporting quantities		

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.N-Q.1-3 Express quantities to the appropriate precision of measurement

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.S-ID.1-2

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.S-ID.1 Represent	M.EE.S-ID.1-2	Initial Precursor:
data with plots on	Given data,	Classify
the real number line	construct a simple	Order Objects
(dot plots,	graph (table, line,	Distal Precursor:
histograms, and box	pie, bar, or picture)	• Recognize the structure of a bar graph
plots);	and interpret data	• Recognize the structure of a picture graph
M.S-ID.2 Use		• Recognize the structure of a line graph
statistics		• Recognize the structure of a pie chart
appropriate to the		Proximal Precursor:
shape of the data		• Use bar graphs to read the data
distribution to		• Use picture graphs to read the data
compare center		• Use line graphs to read the data
(median, mean) and		• Use pie charts to read the data
spread		Target:
(interquartile range,		• Use graphs to read beyond the data
standard deviation)		Represent data using bar graph
different data sets		Represent data using picture graph
unierent uata sets		Represent data using line graph
		Represent data using pie charts
		Successor:
		• Use graphs to read beyond the data

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.S-ID.1-2 Given data, construct a simple graph (table, line, pie, bar, or picture) and interpret data

MATH: HIGH SCHOOL

M.EE.S-ID.3

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.S-ID.3	M.EE.S-ID.3	Initial Precursor:
Interpret differences	Interpret general	Order objects
in shape, center, and	trends on a	Classify
spread in the context	graph or chart	Distal Precursor:
of the data sets,		• Recognize the structure of a bar graph
accounting for		• Recognize the structure of a picture graph
possible effects of		• Recognize the structure of a line plot (dot
extreme data points		plot)
(outliers)		Recognize the structure of a pie chart
		Proximal Precursor:
		Recognize symmetric distribution
		Recognize outliers
		Recognize peaks in data distribution
		• Recognize variability in a date set
		Target:
		• Analyze overall shape of the data
		distribution
		• Draw inferences by interpreting general
		trends on a graph or chart
		Successor:
		• Draw inferences by comparing two data
		sets

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.S-ID.3 Interpret general trends on a graph or chart

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL

M.EE.S-ID.4

Grade-Level Standard	DLM Essential Element	Linkage Levels
M.S-ID.4	M.EE.S-ID.4 Calculate	Initial Precursor:
Understand that patterns of	the mean of a given data	Recognize attribute values
association can also be seen in	set (limit the number of	Distal Precursor:
bivariate categorical data by	data points to fewer than	Classify
displaying frequencies and	five)	Proximal Precursor:
relative frequencies in a two-		• Summarize data by the
way table. Construct and		number of observations
interpret a two-way table		Target:
summarizing data on two		Calculate mean
categorical variables collected		Successor:
from the same subjects. Use		• Summarize data by
relative frequencies calculated		measurement
for rows or columns to		
describe possible association		
between the two variables. For		
example, collect data from		
students in your class on		
whether or not they have a		
curfew on school nights and		
whether or not they have		
assigned chores at home. Is		
there evidence that those who		
have a curfew also tend to		
have chores?		

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.S-ID.4 Calculate the mean of a given data set (limit the number of data points to fewer than five)

MATH: HIGH SCHOOL

M.EE.A-CED.1

DLM Essential	Linkage Levels
Element	
M.EE.A-CED.1	Initial Precursor:
M.EE.A-CED.1 Create an equation involving one operation with one variable, and use it to solve a real-world problem	 Initial Precursor: Combine sets Partition sets Distal Precursor: Represent multiplication with equations Represent division with equations Represent subtraction with equations Represent addition with equations Proximal Precursor: Represent expressions with variables Represent the unknown in an equation Target: Solve real-world problems using equations with non-negative rational numbers Represent real-world problems as equations
	 Solve rational equations in 1 variable
	DLM Essential Element M.EE.A-CED.1 Create an equation involving one operation with one variable, and use it to solve a real-world problem

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.A-CED.1 Create an equations involving one operation with one variable, and use it to solve a real-world problem

MATH: HIGH SCHOOL

M.EE.A-CED.2-4

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.A-CED.2 Create	M.EE.A-CED.2-4	Initial Precursor:
equations in two or	Solve one-step	Partition sets
more variables to	inequalities	Combine sets
represent		Distal Precursor:
relationships		 Represent division with equations
between quantities;		Represent subtraction with equations
graph equations on		Represent addition with equations
coordinate axes with		Represent multiplication with equations
labels and scales;		Proximal Precursor:
M.A-CED.3		• Solve linear equalities in one variable
Represent		Target:
constraints by		 Solve linear inequalities in 1 variable
equations or		• Represent solutions of inequalities on a
inequalities, and by		number line
systems of equations		Successor:
and/or inequalities,		• Explain solution to a linear inequality in
and interpret		one variable
solutions as viable or		
nonviable options in		
a modeling context.;		
M.A-CED.4		
Rearrange formulas		
to highlight a		
quantity of interest,		
using the same		
reasoning as in		
solving equations		

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.A-CED.2-4 Solve one-step inequalities

M.EE.A-CED.2-4 Solve one-step inequalities

MATH: HIGH SCHOOL

M.EE.A-SSE.1

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.A-SSE.1	M.EE.A-SSE.1	Initial Precursor:
Interpret expressions	Identify an	Combine sets
that represent a	algebraic	Partition sets
quantity in terms of	expression	Distal Precursor:
its context	involving one	Represent subtraction with equations
	arithmetic	Represent addition with equations
	operation to	Represent multiplication with equations
	represent a real-	Represent division with equations
	world problem	Proximal Precursor:
		Represent the unknown in an equation
		Represent expressions with variables
		Target:
		 Represent real-world problems as
		equations
		 Represent real-world problems as
		expressions
		Successor:
		Solve real-world problems using equations
		with non-negative rational numbers

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.A-SSE.1 Identify an algebraic expression involving one arithmetic operation to represent a real-world problem

MATH: HIGH SCHOOL

M.EE.A-SSE.3

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.A-SSE.3	M.EE.A-SSE.3	Initial Precursor:
Choose and produce	Solve simple	Partition sets
an equivalent form of	algebraic	Combine sets
an expression to	equations with	Distal Precursor:
reveal and explain	one variable	Demonstrate the concept of division
properties of the	using	• Demonstrate the concept of multiplication
quantity represented	multiplication	Proximal Precursor:
by the expression	and division	• Determine the unknown in a division
		equation
		• Determine the unknown in a multiplication
		equation
		Target:
		Solve linear equations in one variable
		• Solve linear equations in 1 variable with
		rational number coefficients
		Successor:
		Solve linear inequalities in 1 variable

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.A-SSE.3 Solve simple algebraic equations with one variable using multiplication and division

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.A-REI.10-12

Grade-Level Standard	DLM Essential	Linkage Levels
M.A-REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line); M.A- REI.11 Explain why the x- coordinates of the points where the graphs of the equations $y = f(x)$ and $y =$ g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately; M.A-REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes	M.EE.A-REI.10-12 Interpret the meaning of a point on the graph of a line. For example, on a graph of pizza purchases, trace the graph to a point and tell the number of pizzas purchased and the total cost of the pizzas	 Initial Precursor: Arrange objects in pairs Order objects Distal Precursor: Explain coordinate pairs (ordered pairs) Explain x-coordinate Explain y-coordinate Proximal Precursor: Recognize covariation Recognize direction of covariation Describe rate of change in a graph Target: Analyze linear function graphs interpret a point on the graph of a linear function Solve real-world problems by interpreting linear function graphs

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.A-REI.10-12 Interpret the meaning of a point on the graph of a line

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.A-SSE.4

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.A-SSE.4 Derive the	M.EE.A-SSE.4	Initial Precursor:
formula for the sum	Determine the	Classify
of a finite geometric	successive term	Contrast objects
series (when the	in a geometric	Order objects
common ratio is not	sequence given	Distal Precursor:
1), and use the	the common	Recognize symbolic patterns
formula to solve	ratio	Recognize sequence
problems. For		Proximal Precursor:
example, calculate		Recognize the recursive rule for geometric
mortgage payments		sequences
		Recognize geometric sequences
		Target:
		• Extend a geometric sequence by applying
		the recursive rule
		Successor:
		• Determine the term in a geometric
		sequence given the nth term formula

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.A-SSE.4 Determine the successive term in a geometric sequence given the common ratio

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.F-BF.1

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.F-BF.1 Write a	M.EE.F-BF.1	Initial Precursor:
function that	Select the	Order objects
describes a	appropriate	Arrange objects in pairs
relationship between	graphical	Distal Precursor:
two quantities	representation	Explain y-coordinate
	(first quadrant)	• Explain coordinate pairs (ordered pairs)
	given a situation	Explain x-coordinate
	involving	Proximal Precursor:
	constant rate of	Recognize covariation
	change	Recognize direction of covariation
		• Describe rate of change in a graph
		Target:
		Represent real-world problems as graphs
		Successor:
		Solve real-world problems by interpreting
		linear function graphs

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.F-BF.1 Select the appropriate graphical representation (first quadrant) given a situation involving constant rate of change

MATH: HIGH SCHOOL

M.EE.F-BF.2

Grade-Level	DLM Essential	Linkage Levels
Standard	Element	
M.F-BF.2 Write	M.EE.F-BF.2	Initial Precursor:
arithmetic and	Determine an	Classify
geometric sequences	arithmetic	Contrast objects
both recursively and	sequence with	Order objects
with an explicit	whole numbers	Distal Precursor:
formula, use them to	when provided a	Recognize symbolic patterns
model situations, and	recursive rule	Recognize sequence
translate between		Proximal Precursor:
the two forms		Recognize arithmetic sequences
		• Recognize the recursive rule for arithmetic
		sequences
		Target:
		• Extend an arithmetic sequence by applying
		the recursive rule
		Successor:
		• Determine the term in an arithmetic
		sequence given the nth term formula

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.F-BF.2 Determine an arithmetic sequence with whole numbers when provided a recursive rule

MATH: HIGH SCHOOL

M.EE.F-IF.1-3

Grade-Level Standard	DLM Essential Element	Linkage Levels
M.F-IF.1 Understand that	M.EE.F-IF.1-3	Initial Precursor:
a function from one set	Use the concept of	Order objects
(called the domain) to	function to solve problems	 Arrange objects in pairs
another set (called the		Distal Precursor:
range) assigns to each		Explain x-coordinate
element of the domain		Explain y-coordinate
exactly one element of		• Explain coordinate pairs
the range. If f is a function		(ordered pairs)
and x is an element of its		Proximal Precursor:
domain, then f(x) denotes		• Describe the rate of change in
the output of f		a table
corresponding to the		• Describe rate of change in a
input x. The graph of f is		graph
the graph of the equation		Target:
y = f(x);		• Solve real-world problems by
M.F-IF.2 Use function		interpreting linear function
notation, evaluate		graphs
functions for inputs in		• Solve real-world problems by
their domains, interpret		interpreting linear function
statements that use		tables
function notation in		Successor:
terms of a context; M.F -		• Use graphs to read beyond
IF.3 Recognize that		the data
sequences are functions,		• Use tables to predict function
sometimes defined		values
recursively, whose		
domain is a subset of the		
integers. For example, the		
Fibonacci sequence is		
defined recursively by		
f(0) = f(1) = 1, f(n + 1) =		
$f(n) + f(n - 1)$ for $n \ge 1$		

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research. A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.F-IF.1-3 Use the concept of function to solve problems

MATH: HIGH SCHOOL

M.EE.F-IF.4-6

Grade-Level Standard	DLM Essential	Linkage Levels
	Element	
M.F-IF.4 For a function that	M.EE.F-IF.4-6	Initial Precursor:
M.F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity; M.F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it	Element M.EE.F-IF.4-6 Construct graphs that represent linear functions with different rates of change and interpret which is faster/slower, higher/ lower, etc.	Linkage Levels Initial Precursor: Arrange objects in pairs Order objects Distal Precursor: Explain coordinate pairs (ordered pairs) Explain x-coordinate Explain y-coordinate Proximal Precursor: Recognize covariation Recognize direction of covariation Describe rate of change in a graph Target: Compare two functions with different rate of
describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function; M.F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph		 change Analyze linear function graphs Solve real-world problems by interpreting linear function graphs Compare properties of 2 functions represented in the same way

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

M.EE.F-IF.4-6 Construct graphs that represent linear functions with different rates of change and interpret which is faster/slower, higher/ lower, etc.

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP MATH: HIGH SCHOOL M.EE.F-LE.1-3

Grade-Level	DLM Essential Element	Linkage Levels
Standard		
M.F-LE.1 Distinguish	M.EE.F-LE.1-3	Initial Precursor:
between situations	Model a simple linear	Arrange objects in pairs
that can be modeled	function such as y=mx to	Order objects
with linear functions	show that these functions	Distal Precursor:
and with exponential	increase by equal	Explain x-coordinate
functions; M.F-LE.2	amounts over equal	Explain y-coordinate
Construct linear and	intervals	Explain coordinate pairs
exponential functions,		(ordered pairs)
including arithmetic		Proximal Precursor:
and geometric		Recognize covariation
sequences, given a		Recognize direction of
graph, a description of		covariation
a relationship, or two		• Determine slope based on
input-output pairs		coordinate pairs
(include reading these		Target:
from a table);		• Explain average rate of change
M.F-LE.3 Observe		• Determine rate of change of
using graphs and		linear functions
tables that a quantity		Successor:
increasing		Recognize intervals where
exponentially		function is increasing
eventually exceeds a		Recognize intervals where
quantity increasing		function is decreasing
linearly, quadratically,		Estimate average rate of change
or (more generally) as		given granh
a polynomial function		given graph

© 2018 The Dynamic Learning Maps Essential Elements, linkage levels, and nodes are copyrighted by the University of Kansas Center for Research. Linkage levels and nodes are available for use by educators in DLM states but may not be used by commercial entities without written permission. Linkage level information and nodes may not be altered by anyone without express written permission from the University of Kansas Center for Research.

A diagram showing the relationship of nodes in the mini-map appears below.

- IP Initial Precursor SP Supporting
- DP Distal Precursor S Successor
- PP Proximal Precursor UN Untested
- T Target

EE.F-LE.1-3 Model a simple linear function such as y=mx to show that these functions increase by equal amounts over equal intervals

