

TABLE OF CONTENTS

Acknowledgments
Our Vision for Rhode Island o i 1
INtroduction 2
AdVisOTy COMMITIEE . .« vttt ettt e et 3
ReVIEWeTS . . 4
Computer Science & Relevance to Rhode Islandl 5
Alignment with National Efforts / Organizations and Key Documents Referenced 6
Process & Timeline ... e e 7
Guiding Principles. e 8
Equity in Computer Science Education............. . i 9
Computational Thinking....... 10
Standards/Grade Bands........ ..o 11
Implementation of Standards 12
Core Concepts & SUD-CONCePtS . ..ottt 13
1. Computational Thinking & Programming................ ..., 14
2. Computing Systems & Networks o i 15
3. Cybersecurityo 16
4. Data & Analysis..... ..o 17
5. Digital Literacyc.ouiniit i e 18
6. Responsible Computing in Societyot 19
PractiCes. 20
Reading the Standards........... ..o i 23
K-12 Computer Science Education Standards................ ... 24
Appendices
Appendix A: K-12 Computer Science Education Standards (with descriptions)...... 38
Appendix B: GlOSSaryc.uti 57

Appendix C: Glossary References................ooooiiiiiiiiiiiiiiiii i 66

ACKNOWLEDGEMENTS

The development of the Computer Science Education Standards was a statewide collaboration with
contributions from a diverse group of Rhode Island stakeholders. I express my deepest appreciation
to the Advisory Committee that gave up one Saturday a month for almost a year to review, evaluate,
revise, and write the new standards. Their extraordinary dedication, enthusiasm, and thoughtful-
ness made the standards a reality. Special thanks go to Chris Allen, Kathi Fisler, Tim Henry, Joe
Mazzone, Ilona Miko, and Vic Fay Wolfe for providing team leadership as we progressed. A very
heartfelt thank you to Kathi Fisler and Ilona Miko for going above and beyond their responsibilities
by devoting extra time and effort through extensive review, editing, discussion, and support.

I acknowledge, with much appreciation, the Review Team that looked at the draft standards with
fresh eyes, and provided insightful comments and suggestions. Members of the public also con-
tributed time and attention to reviewing the draft standards, and I thank them for invaluable feed-
back. I express my gratitude to the experts in the cybersecurity field and specialists in
digital/media/instructional literacy who critiqued relevant sections of the standards.

A special note of thanks to Pat Yongpradit (Code.org), Peter McLaren (Next Generation Science Stan-
dards Writing Team Member), John Bilotta (Rhode Island Society of Technology Educators), and
Tommy Gober and Kevin Nolten (Cyber Innovation Center) for their guidance, support, and encour-
agement.

The development of the Computer Science Education Standards for Rhode Island would have been
impossible without the support of the van Beuren Charitable Foundation, and especially senior pro-
gram officer Deborah S. Linnell.

Last but not least, many thanks to CS4RI and the Rhode Island Department of Education (RIDE) for
helping us achieve our goal of developing comprehensive computer science education standards for
Rhode Island.

The excitement and eagerness with which everyone approached this project is testament to the belief
that all Rhode Island students deserve the best education for future success.

Carol M. Giuriceo, Ph.D.
Chair, Computer Science Education Standards Advisory Committee

OuRr VisioN FOR RHODE IsLAND

Our students, including those historically underrepresented, understand the value, influence, and
relevance of computer science education. We believe that increased use and mastery of compu-
tational thinking through the grade levels builds human capacity, and allows students to become
informed users, as well as active creators, of technology. Students shall thoughtfully and ethically
approach personal and societal challenges and participate in finding solutions to local, regional, and
global issues.

Our educators collaborate within communities of professional practice as computer science becomes
the multi-disciplinary bridge across school districts. We believe that an engaged citizenry emerges
from a strong focus on essential life and career skills, problem-solving abilities, and lifelong commit-
ment to learning, which positions Rhode Island as a leader in technology and a premier innovative
center in the United States.

In January 2017, the Rhode Island STEAM Center organized and convened a statewide Computer
Science (CS) Education Advisory Committee, with funding from the van Beuren Charitable Founda-
tion, with the goal of creating CS education standards for Rhode Island. The impetus for this work
was the current momentum surrounding the implementation of CS education in K-12 through the
Computer Science for Rhode Island (CS4RI) initiative and the recent national emphasis on computer
science education.

In March 2017, the CS Education Standards Advisory Committee, composed of Rhode Islanders
from across the state, met to begin work on developing and aligning with the nationally-recognized
K-12 Computer Science Framework (released October 2017), the Computer Science Teachers Associ-
ation (CSTA) Computer Science Standards (draft standards November 2016; final standards released
July 2017), and CS standards work in other states.

The Advisory Committee represented a broad range of expertise. We included elementary, middle,
and high school teachers, district coordinators and administrators, higher education faculty, and in-
dustry professionals. Some members had computer science expertise; others were pedagogy experts
and understood the value and use of academic standards. All served pro bono. Committee meetings
occurred one Saturday a month through December 2017. During this time, we reviewed existing
standards, evaluated practices, and identified core concepts.

We chose to adapt rather than adopt, the CSTA K-12 Standards because we wanted to create stan-
dards that retained the rigorous and collaborative work of the CSTA yet also related to the needs of
Rhode Island. Our adaptations include:

* reorganizing the standards into concepts that we believe more accurately describe our focus
and create logical progressions without too much overlap

» forming a new Digital Literacy concept focused on the use of computing devices, recogniz-
ing its fit alongside the current Information Literacy standards (recently revised) and Media
Literacy standards (in development)

* forming a new Cybersecurity concept and recognizing its increasing global relevance, as well
as Rhode Island’s growing and economically-relevant cybersecurity sector

Throughout the process, we focused on creating pathways that set realistic expectations for all stu-
dents and can be implemented in a sustainable way in Rhode Island. They do not represent a com-
prehensive list of all topics within computer science.

Most of all, we kept equity at the forefront of our discussions. We believe that increased use and
mastery of computational thinking through the grade levels builds human capacity.

ADVISORY COMMITTEE

e Chris Allen, NBCT, Fourth Grade Teacher, Greenbush Elementary School, West Warwick Pub-
lic Schools

* Jenny Chan-Remka, Ed.D., Assistant Superintendent, Woonsocket Education Department

* Michelle Conary, Computer Literacy Instructor, Chariho Middle School, Chariho Regional
School District

* Jane L. Daly, Assistant Superintendent of Schools, Chariho Regional School District
* Vic Fay-Wolfe, Ph.D., Computer Science, University of Rhode Island

» Kathi Fisler, Ph.D., Research Professor, Computer Science, Brown University/Co-Director,
Bootstrap

* Carol M. Giuriceo, Ph.D., Director, Rhode Island STEAM Center @ Rhode Island College

* Lenora E. Goodwin, Consulting Teacher, Teacher Retention and Induction Network (T.R.A.L.N.),
Providence Public Schools

* Timothy Henry, Ph.D., Professor, IT Graduate Director, New England Institute of Technology

* Dominic Herard, Mathematics & Computer Science Teacher, Times Squared STEM Academy,
Providence

* Verda Jones, Business & Technology Instructor, Shea Senior High School, Pawtucket School
District

* Ramarao Koppaka, Staff Vice President, Principal Enterprise Architect, FM Global

* Linda Larsen, Director of Education Outreach & Workforce Development, Southeastern New
England Defense Industry Alliance (SENEDIA)

* Bryan Lucas, Computer Science/Literacy Teacher, Chariho Middle School, Chariho Regional
School District

* Joe Mazzone, Secretary, CSTA-RI/Career and Technical Education Instructor, William M. Davies
Jr. Career and Technical High School, Lincoln

* Ilona Miko, Ph.D., MikoArtScience Consulting
* Ryan Mullen, Coordinator of Teaching & Learning, Warwick Public Schools

» Elizabeth (Liz) Patterson, Computer Science Teacher, Portsmouth High School, Portsmouth
School Department

* Janet Prichard, Ph.D., Professor, Information Systems and Analytics, Bryant University

* Cmdr. Joseph E. Santos, Military Professor, U.S. Naval War College, Newport

REVIEWERS

Review Team

* Amanda Bagley, Second Grade Education Teacher, Greenbush Elementary School, West War-
wick Public Schools

* John Bilotta, Executive Director, Rhode Island Society of Technology Educators (RISTE)
* Joe Devine, Partner & CTO, Bridge Technical Talent, LLC

* Howard L. Dooley, Jr., Project Manager, Rhode Island Technology Enhanced Sciences and Com-
puting (RITES +C), University of Rhode Island

* Donald Gregory, Education Specialist, Providence Public Library

* Linda A. Jzyk, Grant Specialist, Rhode Island College Foundation, Former Science and Tech-
nology Specialist, Rhode Island Department of Education (RIDE)

* Tom Kowalczyk, Founder, KMRM,LLC

* Theresa Moore, President, T-Time Productions

* Diane Sanna, Assistant Superintendent, Bristol Warren Regional School District
* John Smithers, CEO, Tech Collective

* Holly Walsh, Digital Learning Specialist, Office of College and Career Readiness, Rhode Island
Department of Education (RIDE)

Specialists
Cybersecurity
* Jason Albuquerque, C/CISO,CGCIO, Chief Information Security Officer, Carousel Industries

* Brig Gen Kimberly A. Baumann, Ph.D., Assistant Adjutant General, Rhode Island National
Guard

* Simon A. Cousins, Principal Client Specialist, FM Global

* Richard Siedzik, Director of Information Security and Planning/ISO, Bryant University

Digital Literacy

* Renee Hobbs, Ph.D., Professor, Department of Communication Studies; Co-Director, Graduate
Certificate in Digital Literacy, Harrington School of Communication and Media, University of
Rhode Island

* Mary H. Moen, Ph.D., Assistant Professor, Graduate School of Library and Information Studies,
University of Rhode Island

* Zoey Wang, Graduate Assistant, Rhode Island STEAM Center @ Rhode Island College
Public Review: Their Feedback

An open invitation was extended to teachers, principals, district administrators, superintendents,
industry professionals, and other stakeholders to submit comments on the draft standards. There
feedback provided valuable input that greatly enhanced the content of the standards.

CoMPUTER ScIENCE & RELEVANCE TO RHODE IsLAND

In January 2016, the Metropolitan Policy Program at Brookings, along with Battelle Technology
Partnership Practice (now TEConomy Partners, LLC) and with support from Monitor Deloitte, De-
loitte Consulting LLP released Rhode Island Innovates: A Competitive Strategy for the Ocean State,
a detailed economic assessment with recommendations for Rhode Island’s economic development.
Brookings and its partners engaged in a six-month inquiry with private- and public-sector stake-
holders across the state to assess Rhode Island’s present situation and competitive position, and to
provide an action plan for strategy development.

The report identified CS science as a core competency in Rhode Island with areas of focus in data
sciences, robotics, cybersecurity, and algorithms. According to Brookings, a core competency “rep-
resent[s] zones of endeavor where a place has the ability to grow. Core competencies indicate where
there is a critical mass of expertise and creative activity across product development and process
improvements that has the potential to generate new intellectual property and startups . . . core
competencies highlight where a state’s firms and research institutions have the capacity not only to
advance new research discoveries but also to apply them, mobilize talent, and create good jobs.” The
report indicated that over 3,800 jobs posted online in 2013 in Rhode Island required knowledge of
at least one programming language.

Unfortunately, the Brookings inquiry also found that student engagement with CS was low, with
many of the state’s schools only offering a basic computer literacy class as a graduation requirement,
rather than a more rigorous and comprehensive CS course. During the 2014-2015 academic year,
only 72 Rhode Island students took the AP CS exam. Acknowledging the need for sustainable so-
lutions, recommendations included incorporating CS into the PK-12 curriculum through changing
technology graduation requirements and public/private partnerships that work to implement CS
courses and professional development.

To meet this need, the Computer Science for Rhode Island initiative, or CS4RI was created to bring
CS learning opportunities to all Rhode Island schools. National and local programs from Microsoft,
Project Lead the Way, and Code.org, to the University of Rhode Island and Brown University, are
currently serving as content providers, offering professional development and established curricula
to schools across the state. The CS4RI initiative brings computer education to the forefront of the
discussion, as well as needed resources to jumpstart CS incorporation in K-12 education.

Conversations with educators during the first months of CS4RI implementation indicated that ed-
ucators would welcome guidelines that assist in the development of computer science pathways.
Identifying achievement outcomes for students in different grades would allow educators to feel
confident that they were teaching what students need to know. In January 2017, the Rhode Island
STEAM Center @ Rhode Island College received funding from the van Beuren Charitable Founda-
tion to develop Computer Science Education Standards for Rhode Island.

ALIGNMENT WITH NATIONAL EFFORTS

The Computer Science (CS) Education Standards process began at a critical time in K-12 computer
science education.

* In October 2016, the K-12 Computer Science (CS) Framework was released. The Framework,
a national effort led by the Association for Computing Machinery (ACM), Code.org, Computer
Science Teachers Association (CSTA), Cyber Innovation Center (CIC), and the National Math +
Science Initiative (Steering Committee) defined conceptual guidelines for states and districts
to create a K-12 pathway in CS. Participants in the development of the Framework included
writers, advisors, and researchers who represented associations (such as the International So-
ciety for Technology Education [ISTE]), industry (such as Microsoft, Google, Apple), states,
school districts, higher education, and K-12.

e In July 2017, the Computer Science Teachers Association released their revised K-12 Com-
puter Science Standards, which aligned with the K-12 CS Framework. These standards de-
scribe learning objectives designed to provide the foundation for a complete computer science
curriculum at the K-12 level.

* Both the Framework and the CSTA Standards are based on current professional research and
practice in computer science education.

ORGANIZATIONS AND KEY DoCcUMENTS REFERENCED

K-12 Computer Science Framework

Our standards reflect the recommendations of the K-12 Computer Science Framework, led by the
Association for Computing Machinery, Code.org, Computer Science Teachers Association, Cyber In-
novation Center, and National Math and Science Initiative, in partnership with states and districts.
The K-12 Compute Science Framework is endorsed by leading industry and educational organiza-
tions, as well as K-12, higher education, and research leaders in the field of computer science educa-
tion. To find more information, including a full list of supporters, visit k12cs.org.

2017 CSTA K-12 Computer Science Standards

The Advisory Committee used the 2017 CSTA K-12 Computer Science Standards as a foundation
for our standards but modifications were made to reflect the education environment in Rhode Is-
land. The CSTA Standards are licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. To find more information, visit
https://www.csteachers.org/page/standards.

2016 Massachusetts Digital Literacy and Computer Science (DLCS) Curriculum Framework

The Advisory Committee reviewed the 2016 Massachusetts Digital Literacy and Computer Science
(DLCS) Curriculum Framework developed by the Massachusetts Department of Elementary and
Secondary Education with a focus on the Digital Tools and Collaboration strand. To find more
information, visit http://www.doe.mass.edu/frameworks/dlcs.pdf.

https://k12cs.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.csteachers.org/page/standards
http://www.doe.mass.edu/frameworks/dlcs.pdf

PRrROCESSs & TIMELINE

The Computer Science (CS) Education Standards Committee met monthly for day-long sessions from
March 2017 to December 2017. Smaller committees convened more frequently during January and
February 2018 for targeted discussions. Our process included reviewing the K-12 CS Framework
and existing CS standards in other states. The Committee identified working Core Concepts and
Sub-Concepts after the initial review. Smaller working groups with members representing different
sectors formed to focus on specific concepts. Review of the CSTA CS K-12 Standards began. As work
progressed, the Committee decided to combine two of the existing Concepts into one and add two
new Concepts. The Committee followed a similar process with the Sub-Concepts.

Other stakeholders also helped to inform the standards. Although the Committee used existing
standards in cybersecurity and digital literacy as starting points, we reached out to cybersecurity
experts who offered suggestions and recommendations so the standards were comprehensive but
not overly technical. Additionally, the Committee was aware of the overlap among digital literacy,
media literacy, and instructional literacy, and met with specialists to discuss how to include digital
literacy in the CS standards without duplication.

The Review Team, composed of Rhode Islanders from across the state, served as the reviewers for
the draft standards. They evaluated the draft standards using a checklist developed by the K-12 CS
Framework developers. Criteria included focus/manageability, equity, coherence/progression, clar-
ity/accessibility, and measurability, among others.

March-December December 2017 January 2018 February-March April 2018
2017 Meetings with Smaller working 2018 Presentation
Maonthly all-day external teams focused Review of draft to Council
Saturday specialists/experts on specific standards by on

meetings with in digital literacy concepts Review Team Elementary
Advisory and cybersecurity and public & Secondary
Committee for specific input Education

The following Guiding Principles helped establish our aspirational vision
and informed the development of K-12 Computer Science education

standards for Rhode Island.

Broaden Participation &
Equity

All students regardless of age, race, ethnicity, gender, socioeconomic
status, special needs, English proficiency, or any other demographic
will have the opportunity to participate in computer science.The
content and practices of the standards will be accessible to all.

Stimulate Learning &
Curiosity

The standards at all grade levels will connect to appropriate real world
challenges as a means to motivate and empower, promote individual
growth, and spark a desire for life-long learning.

Build Connections Across

Computer science will complement other disciplines and build upon and develop
student knowledge., The standards will connect with practices and
concepts from the Common Core State Standards (CCSS) and the Next

Disciplines Generation Science Standards (NGSS) to promote learning across
disciplines.
Encourage Students will have the skills, practices, and knowledge to participate in a
Workforce /ECfnomic world that is increasingly influenced and shaped by technological
Development advancements.,The standards will help to prepare students who can

adapt and prosper under constantly changing conditions.

Support Teachers

The standards will identify focused learning progressions and multi-tier
teaching approaches that meet the needs of all learners.

Inform with Current
Research

The standards will be based on current professional research and practice
in computer science education and pedagogy.

EQuity IN COMPUTER SCIENCE EDUCATION

The Rhode Island Computer Science Education Standards Advisory Committee believes that equity
and broadening participation must be at the forefront of the computer science initiative to ensure
that all Rhode Island students benefit. We strongly agree with the position identified in the K-12
Computer Science Framework (2016) which states:

When equity exists, there are appropriate supports based on individ-
ual students’ needs so that all have the opportunity to achieve similar
levels of success. Inherent in this goal is a comprehensive expectation
of academic success that is accessible by and applies to every student.

. equity, inclusion, and diversity are critical factors in all aspects of
computer science.(pp.23, 26)!

We constantly returned to this issue throughout the development of the standards. We worked to
ensure equity is embedded in the standards themselves, the descriptions, and the accompanying
suggested activities. Additionally, standards can be met without computing devices or with a
limited amount of available hardware so implementation is possible for all schools.

1. K-12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org

COMPUTATIONAL THINKING

Computational thinking involves solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to
computer science. . . . This kind of thinking will be part of the skill set of, not
only other scientists, but of everyone else. Ubiquitous computing is to today
as computational thinking is to tomorrow. Ubiquitous computing was
yesterday’s dream that become today’s reality; computational thinking is
tomorrow’s reality.

— Jeannette Wing, March 2006
Communications of the ACM, 49(3), 33-35.

Computational thinking is central to the standards and a necessary skill for participation in today’s

society. It can be applied broadly to solving complex problems in other disciplines and can be
taught across the K-12 curriculum.!

1. Computational Thinking for a Computational World. (2017). Retrieved from
http://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf

10

STANDARDS

Standards represent pathways that are realistic expectations for all students. They identify the
knowledge, practices, and skills in computer science that all students should know and be able to
do at each level in their education. They serve as specific performance measures and are used as
reference points for planning and teaching, including but not limited to, the development of
curriculum frameworks, curricula, lesson plans, instruction, professional development, and
assessment.

The standards are written to be aspirational — they represent the concepts and practices that all
students need to master. They are designed to inform, encourage, and drive a sustainable computer
science education program, and were developed to be cognitively appropriate for each grade band.
Careful attention was paid to word choice in the standards to ensure measurability.

GRrRADE BANDS

The decision to adopt and use the grade bands identified in the CSTA K-12 Standards document -
K-2, 3-5, 6-8, 9-12 — allows for increased flexibility for implementation in schools. Although the
CSTA separated grades 9-12 into two levels — 9-10, 11-12 — with the 11-12 level designed for
students enrolled in more rigorous courses, we decided that it was appropriate to extend the 9-10
level to 9-12 at this time since our goal focused on standards for ALL students.

11

IMPLEMENTATION OF STANDARDS

The Computer Science (CS) Education Standards are designed for all students K-12 in Rhode Island
regardless of career aspirations. They represent the knowledge and skills that all students need to
effectively participate and be productive in today’s society.

At this time, adoption of the CS Education Standards by school districts is not mandatory.
However, the response to the CS4RI initiative in connecting content providers with local schools to
reduce barriers and provide quality CS education and professional development has been
overwhelmingly positive at all grade levels.

CS4RI will support implementation of the CS Education Standards in school districts through a
four-pronged approach:

1. All curricula and professional development offered by CS content providers in the CS4RI
matrix will be aligned with the new Rhode Island standards. The new Memorandums of
Understanding include this requirement.

2. The SCRIPT — School CSforALL Resource & Implementation Planning Tool — will be offered in
Summer 2018 to all school districts to serve as a framework and platform to guide district
staff in the creation of implementation plans based on the needs and goals of individual
districts.

3. CS4RI will be working closely with the Computer Science Teachers Association — Rhode
Island to provide resources and support through communities of practice.

4. CS4RI will be developing additional resources and supplementary materials to support CS
Education Standards adoption in K-12 education.

12

CorE CoNcEPTS AND SuB-CONCEPTS

The Core Concepts represent specific areas of disciplinary importance in computer science. The
Sub-Concepts represent specific ideas within each concept.

* Algorithms

* Variables

* Data Structures & Data Types
* Control Structures

* Modularity

* Computational Design

Computational Thinking & Programming

* Human-Computer Interaction
e Hardware & Software

* Troubleshooting

¢ Networks & the Internet

* Risks
Cybersecurity * Safeguards
* Response

Computing Systems & Networks

* Collection, Visualization, & Transformation
Data & Analysis * Inference & Models
» Storage

* Creation & Use
Digital Literacy * Searching Digital Information
* Understanding Software Tools

* Culture
Responsible Computing in Society * Safety, Law, & Ethics
* Social Interactions

Each Core Concept and Sub-Concept is described in more detail on the following pages. The
descriptions were adopted from the K-12 CS Framework. Certain changes and additions were made
when necessary.

13

CoMPUTATIONAL THINKING & PROGRAMMING

Overview: Computational thinking involves problem solving that requires the logical analysis of
data. It serves as a fundamental skill for all students, and can be applied to complex problems
across disciplines. These skills empower people to communicate with the world in new ways and
solve compelling problems. Creating meaningful and efficient programs involves choosing which
information to use and how to process and store it, breaking apart large problems into smaller
ones, recombining existing solutions, and analyzing different solutions.

Algorithms

An algorithm is a sequence of steps designed to accomplish a specific
task. Algorithms are translated into programs, or code, to provide
instructions for computing devices, and are designed to be carried
out by both humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world. As they
progress, students learn about the development, combination, and
decomposition of algorithms, as well as the evaluation of competing
algorithms.

Variables

Computer programs store and manipulate data using variables. In early grades,
students learn that different types of data, such as words, numbers,

or pictures, can be used in different ways. As they progress,

students learn about variables, and ways to organize large

collections of data into data structures of increasing complexity.

Data Structure &
Data Types

Data structures store and organize data within a computer program. Data
types classify data by attributes. In early grades, students learn

to model and identify real-world examples of data. As they progress,
they organize and create programs to process those data.

Control
Structures

Control structures specify the order in which instructions are executed
within an algorithm or program. In early grades, students learn

about sequential execution and simple control structures. As they
progress, students expand their understanding to combinations of
structures that support complex execution.

Modularity

Modularity involves breaking down tasks into simpler tasks, and combining simple
tasks to create something more complex. In early grades, students

learn that algorithms and programs can be designed by breaking tasks

into smaller parts and recombining existing solutions. As they

progress, students learn about recognizing patterns to make use of

general, reusable solutions for commonly occurring scenarios, and

clearly describing tasks in ways that are widely usable.

Computational Design

Programs are developed through a design process that is often repeated until
the programmer is satisfied with the solution. In early grades,

students learn how and why people develop programs. As they

progress, students learn about the tradeoffs in program design

associated with complex decision, which involve user constraints,

efficiency, ethics and testing.

14

CoMPUTING SYSTEMS & NETWORKS

Overview: People interact with a wide variety of computing devices that collect, store, analyze, and
act upon information in ways that can affect human capabilities, both positively and negatively.
The physical components (hardware) and instructions (software) that make up a computing system
communicate and process information in digital form. An understanding of hardware and software
is useful when troubleshooting a computing system that does not work as intended.

Additionally, computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of computing.
Networks and communication systems provide greater connectivity in the computing world by
providing fast, secure communication, and facilitating innovation.

Human-Computer
Interaction

Many everyday objects contain computational components that both sense and
act on the world. In early grades, students learn features and

applications of common computing devices. As they progress, students

learn about connected systems and how the interaction between humans

and devices influences design decisions.

Hardware
& Software

Computing systems use hardware and software to communicate and process
information in digital form. In early grades, students learn how

systems use both hardware and software to represent and process
information. As they progress, students gain a deeper understanding

of the interaction between hardware and software at multiple levels

within computing systems.

Troubleshooting

When computing systems do not work as intended, troubleshooting strategies
help people solve the problem. In early grades, students learn that
identifying the problem is the first step to fixing it. As they

progress, students learn systematic problem-solving processes and how

to develop their own troubleshooting strategies, based on a deeper
understanding of how computing systems work.

Networks
& the Internet

Computing devices communicate with each other across networks to share
information. In early grades, students learn that computers connect

them to other people, places, and systems around the world. As they
progress, students gain a deeper understanding of how information is

sent and received across different types of networks.

15

Overview: Cybersecurity includes practices, processes, technologies, and other protective measures
that are designed to protect against unwanted, unauthorized, or illegal access to or use of data,
through onsite or remote devices, programs, and/or networks. As more information becomes
digitized, both proactive and adaptive approaches to securing data become essential to meet the
frequent and continually-evolving cybersecurity risks.

Risks

Being online or connected to a network has become part of a daily routine in personal,
school and work environments. Students have ubiquitous access to information but
are also exposed to common threats, scams, and fraud. In the early grades, students
learn to identify and detect activity that may be monitoring and compromising their
information. As they progress, students learn about social engineering, privacy
concerns, and personal responsibility.

Safeguards

Transmitting information securely across networks requires appropriate protection that
will mitigate or contain the impact, or even prevent the cybersecurity event.

Safeguards include limiting access, using targeted processes and procedures,
maintaining security software, and continuous monitoring of activity. In early grades,
students learn how to protect their personal information. As they progress, students
learn increasingly complex ways and tools used to protect information sent across
networks and the trade-offs when selecting and implementing cybersecurity strategies.

Response

Implementing appropriate measures in response to a cybersecurity event requires

an awareness of and a suitable reaction to the threat. Responses include pre-event
planning, adoption and maintenance, threat containment, structure reporting and
communications protocols, root cause analysis, and continuous process improvement.

In the early grades, students learn when to report suspicious activity. As they progress,
students learn how to take appropriate action on both personal and organizational levels.

16

DATA & ANALYSIS

Overview: Computing systems exist to process data. The amount of digital data generated in the
world is rapidly expanding, so the need to process data effectively is increasingly important. Data
are collected, analyzed and stored to better understand our social structures, geography, health and
environment, and to make more accurate predictions about them.

Data are collected with both computational and non-computational tools
and processes. In early grades, students learn how data about themselves
and their environment are collected and used. As they progress, students
learn the effects of collecting data with computational and automated
tools. Data are transformed throughout the process of collection, digital
representation, and analysis. In early grades, students learn how
transformations can be used to simplify data. As they progress, students
learn about more complex operations to discover patterns and trends,
and communicate those to others.

Collection, Visualization, &
Transformation

Data science is one example where computer science serves many fields.
Computer science and other sciences use data to make inferences, theories,
or predictions based upon data collected from users or simulations. In early
Inference & Models grades, students learn about the use of data to make simple predictions.

As they progress, students learn how models and simulations can be used
to examine theories and understand systems, and how predictions and
inferences are affected by more complex and larger data sets.

Core functions of computers are storing, representing, and retrieving data.
In early grades, students learn how data are stored on computers. As they
progress, students learn how to evaluate different storage methods,
including the tradeoffs associated with those methods.

Storage

17

DiGciTAL LITERACY

Overview: Digital literacy refers to the ability to leverage software technology to create, share, and
modify artifacts, as well as search over digital information. This literacy includes understanding
the benefits and implications of software tool use while accessing digital information and
collaborating on digital artifacts. Digital literacy is a multifaceted concept that extends beyond
skills-based activities and incorporates both cognitive and technical skills.

Creation & Use

Software tools are used to create and edit artifacts as well as locate
and retrieve information. In early grades, students learn how to
perform common operations using local, networked, or online tools.
As they progress, students learn how to collaborate using software
tools, and make informed decisions according to purpose and need.

Searching Digital Information

Locating, retrieving, and organizing relevant information includes
being able to search for information in different ways. In early
grades, students conduct basic and multi-criteria searches to find
information in digital resources. As they progress, students learn to
expand to multiple formats and databases, and synthesize search
results to answer a complex question or solve a problem.

Understanding Software Tools

Humans interact with software tools to perform tasks. In early grades,
students begin by understanding what software can do and how to
explain this to others. As they progress, they learn about how
software tools perform computations to incorporate multiple
functions, and how software can be customized depending on who is
using it.

18

REsPONSIBLE COMPUTING IN SOCIETY

Overview: Computing affects many aspects of our world in both positive and negative ways, and at
local and global scales. Individuals and communities influence computing through both their
behaviors and cultural and social interactions, and in turn, computing influences new cultural
practices. An informed and responsible person should understand the social implications of
computing technology, including its impact on equity and access to computing.

Culture

Computing influences culture—including belief systems, language,
relationships, technology, and institutions—and culture shapes how
people engage with and access computing. In early grades, students
learn how computing can be helpful and harmful. As they progress,
students learn about tradeoffs associated with computing and potential
future impacts of computing on global societies.

Safety, Law, & Ethics

Legal and ethical considerations of using computing devices influence
behaviors that can affect the safety and security of individuals. In early
grades, students learn the fundamentals of digital citizenship and
appropriate use of digital media. As they progress, students learn about
the legal and ethical issues that shape computing practices.

Social Interactions

Computing can support new ways of connecting people, communicating
information, and expressing ideas. In early grades, students learn that
computing can connect people and support interpersonal communication.
As they progress, students learn how the social nature of computing
affects institutions and careers in various sectors.

19

We adopted the practices that the K-12 CS Framework developed, and that are used in the CSTA
K-12 Standards. These practices describe the behavior and ways of thinking that
computationally-literate students use to engage in Core Concepts.

The Advisory Committee added an eighth practice — Using Technology Appropriately — which
describes the necessary behavior and ways of thinking that support the Cybersecurity and Digital

Literacy Core Concepts.

Practice 1
Fostering an Inclusive
Computing Culture

Overview: Building an inclusive and diverse computing culture requires
strategies for incorporating perspectives from people of different genders,
ethnicities, and abilities. Incorporating these perspectives involves
understanding the personal, ethical, social, economic, and cultural contexts
in which people operate. Considering the needs of diverse users during

the design process is essential to producing inclusive computational products.

1.1 Include the unique perspectives of others and reflect on one’s own
perspectives when designing and developing computational products.

1.2 Address,the needs of diverse users during the design process to produce
artifacts with broad accessibility and usability.

1.3 Employ self- and peer-advocacy to address bias in interactions, product
design, and development methods.

Practice 2
Collaborating Around
Computing

Overview: Collaborative computing is the process of performing a
computational task by working in pairs and on teams. Because it involves
asking for the contributions and feedback of others, effective collaboration
can lead to better outcomes than working independently. Collaboration
requires individuals to navigate and incorporate diverse perspectives,
conflicting ideas, disparate skills, and distinct personalities. Students should
use collaborative tools to effectively work together and to create complex
artifacts.

2.1 Cultivate working relationships with individuals possessing diverse
perspectives, skills, and personalities.

2.2 Create team norms, expectations, and equitable workloads to increase
efficiency and effectiveness.

2.3 Solicit and incorporate feedback from, and provide constructive feedback
to team members and other stakeholders.

2.4 Evaluate and select technological tools that can be used to collaborate on
a project.

20

Practice 3
Recognizing & Defining
Computational Problems

Overview: The ability to recognize appropriate and worthwhile
opportunities to apply computation is a skill that develops over
time and is central to computing. Solving a problem with a
computational approach requires defining the problem, breaking it
down into parts, and evaluating each part to determine whether a
computational solution is appropriate.

3.1 Identify complex, interdisciplinary, real-world problems that can
be solved computationally.

3.2 Decompose complex real-world problems into manageable
sub-problems that could integrate existing solutions or procedures.

3.3 Evaluate whether it is appropriate and feasible to solve a problem
computationally.

Practice 4
Developing & Using
Abstractions

Overview: Abstractions are formed by identifying patterns and
extracting common features from specific examples to create
generalizations. Using generalized solutions and parts of solutions
designed for broad reuse simplifies the development process by
managing complexity.

4.1 Extract common features from a set of interrelated processes
or complex phenomena.

4.2 Evaluate existing technological functionalities and incorporate
them into new designs.

4.3 Create modules and develop points of interaction that can
apply to multiple situations and reduce complexity.

4.4 Model phenomena and processes and simulate systems
to understand and evaluate potential outcomes.

Practice 5
Creating Computational
Artifacts

Overview: The process of developing computational artifacts
embraces both creative expression and the exploration of ideas to
create prototypes and solve computational problems. Students
create artifacts that are personally relevant or beneficial to their
community and beyond. Computational artifacts can be created by
combining and modifying existing artifacts or by developing new
artifacts. Examples of computational artifacts include programs,
simulations, visualizations, digital animations, robotic systems, and

apps.

5.1 Plan the development of a computational artifact using an iterative
process that includes reflection on and modification of the plan, taking
into account key features, time and resource constraints, and user
expectations.

5.2 Create a computational artifact for practical intent, personal
expression, or to address a societal issue.

5.3 Modify an existing artifact to improve or customize it.

21

Practice 6
Testing & Refining
Computational Artifacts

Overview: Testing and refinement is the deliberate and iterative process
of improving a computational artifact. This process includes debugging
(identifying and fixing errors) and comparing actual outcomes to
intended outcomes. Students also respond to the changing needs and
expectations of end users and improve the performance, reliability,
usability, and accessibility of artifacts.

6.1 Systematically test computational artifacts by considering all
scenarios and using test cases.
6.2 Identify and fix errors using a systematic process.

6.3 Evaluate and refine a computational artifact multiple times to
enhance its performance, reliability, usability, and accessibility.

Practice 7
Communicating About
Computing

Overview: Communication involves personal expression and exchanging
ideas with others. In computer science, students communicate with
diverse audiences about the use and effects of computation and the
appropriateness of computational choices. Students write clear comments,
document their work, and communicate their ideas through multiple
forms of media. Clear communication includes using precise language and
carefully considering possible audiences.

7.1 Select, organize, and interpret large data sets from multiple sources to
support a claim.

7.2 Describe, justify, and document computational processes and solutions
using appropriate terminology consistent with the intended audience and
purpose.

7.3 Articulate ideas responsibly by observing intellectual property rights
and giving appropriate attribution.

Practice 8
Using Technology
Appropriately

Overview: Today’s technology-focused society requires more than just an
understanding of how to use technology, but a working knowledge of what
is appropriate, responsible, and safe behavior in a digital world. In
computer science, understanding extends to the use of: hardware and
software; applications such as email; the Internet and smaller
home/school/business networks; and the use of onsite and offsite storage.
Additionally, appropriate use includes onsite and remote access.

8.1 Follow certain protocols when using technology.

8.2 Identify and address risks and/or unintended consequences associated
with technological tools by considering all scenarios.

8.3 Evaluate technological tools systematically through the use of select
criteria based on the requirements of the task and the capacity of the system.

22

READING THE STANDARDS

N

(en) ()
\

Mumbering of standards
in grade level in specific
Grade Level Sub-Concept
1A Grades K-2
1B Grades 3-5 Sub-Conce
2 Grades G-8 A Algorithms
3 Grades 9-12 v Variables
D Data Structures & Data Types
C Control Structures
Core Concepts M Modularity
CT Computational Thinking & Programming CD Computational Design
CSN Computing Systems & Networks H Human-Computer Interfaces
CY Cybersecurity HS Hardware & Software
DA Data & Analysis T Troubleshooting
DL Digital Literacy N MNetworks & the Internet
RC Responsible Computing & Society R Risks
s Safeguards
RP Response
CWT Collection, Visualization,
Transformation
IM Interfaces & Models

5T Storage

cu Creation & Use

SDI Searching Digital Information
us Understanding Software Tools
Ccu Culture

SLE Safety, Law, Ethics

sl Social Interactions

23

Grade

COMPUTER SCIENCE EDUCATION

Band Identifier STANDARD CORE CONCEPT Sub-Concept Practice(s)
Model daily processes by creating and followin Computational Developing & Usin
K2 | 1A-CT-A-l Caryp y 8 8 Thinking Algorithms ping &
algorithms to complete tasks. . Abstractions
& Programming
* Recognizing & Defining
Compare and refine multiple algorithms for the Computational Computational Problems
3-5 1B-CT-A-1 same task and determine which is more Thinking Algorithms
appropriate to complete the task. & Programming * Testing & Refining
Computational Artifacts
Use diagrams and/or pseudocode to plan, analyze, Computational . .
6-8 2-CT-A-1 solve and/or code complex problems as Thinking Algorithms Developl‘ng & Using
. . Abstractions
algorithms. & Programming
Create computational artifacts that use Computational Creatine Combutational
9-12 3-CT-A-1 algorithms to solve computational problems by Thinking Algorithms Arti fact% P
leveraging prior knowledge and personal interests. & Programming
Computational Creating Computational
K-2 1A-CT-V-1 Model real-world data and how it is stored. Thinking Variables Arti fact% p
& Programming
Computational Creating Computational
3-5 1B-CT-V-1 Create programs that use variables Thinking Variables Arti fact% p
& Programming
Create clearly named variables that represent Computational Creatine Combutational
6-8 2-CT-V-1 different data. Perform operations on data stored Thinking Variables Arti fact% P
in variables. & Programming
Explain the role of a variable within a program, Computational Developine & Usin
9-12 3-CT-V-1 and the scope in which its name and value can be Thinking Variables s 8

used.

& Programming

Abstractions

Model real-world objects and/or processes that

Computational

Data Structures and Data

Developing & Using

K2 1A-CT-D-1 can be represented by various types of data. & P'fcl)lglil:glr:ﬁing Types Abstractions
3.5 1B-CT-D-1 Identify real-world examples of data structures Cor%11£)i?1tl:;;onal Data Structures and Data | Recognizing & Defining
and data types. & Programrﬁing Types Computational Problems
6-8 2-CT-D-1 Organize data into an appropriate data structure in Cor%lll:iitlj;;(;nal Data Structures and Data | Creating Computational
a program. R Types Artifacts
Computational Data Structures and Data | Creating Computational
9-12 3-CT-D-1 Create a program that processes a collection of data. Thinking Tvpes Artifact% P
& Programming P
. . . Computational . .
K2 1A-CT-C-1 Develop simple programs with sequences and simple Thinkin Control Structures Creating Computational
repetitions 5 Artifacts
& Programming
Create programs that combine sequences, loops Computational Creating Computational
33 1B-CTC- conditionals, and/or events. & P'f(l)lgli'l:i::tgling Control Structures Artifacts
. . Computational . .
6-8 9-CT-C-1 Design programs that combine control structures, T Control Structures Creating Computational
including nested loops and compound conditionals. % Byt Artifacts
Create and justify the selection of specific control Computational
9-12 3-CT-C-1 structures when tradeoffs involve code organization, Tlll)inkin Control Structures Creating Computational
readability, and program performance and explain & Pro ramr;glin Artifacts
the benefits and drawbacks of choices made. 8 8
Computational Recognizing & Definin
K-2 1A-CT-M-1 | Decompose a task into a set of smaller tasks. Thinking Modularity 5 & &

& Programming

Computational Problems

Continually decompose problems into smaller

Computational

Recognizing & Defining

3-5 1B-CT-M-1 | subtasks until each subtask is a manageable set of Thinking Modularity .
. . . Computational Problems
basic operations. & Programming
* Developing & Using
Create computational artifacts by incorporating Computational Abstractions
3-5 1B-CT-M-2 | existing modules into one’s own work to solve Thinking Modularity
a problem. & Programming * Creating Computational
Artifacts
* Recognizing & Defining
. Computational Problems
Decompose computational problems to facilitate the Computational
6-8 2-CT-M-1 . . . Thinking Modularity
design and implementation of programs. .
& Programming . :
* Creating Computational
Artifacts
Create procedures with parameters to organize code Computational Developing & Usin
6-8 2-CT-M-2 pro . P & Thinking Modularity pIg 8
and make it easier to reuse. . Abstractions
& Programming
. _ . . Computational .. .
Identify existing computational artifacts that can . 1 . Recognizing & Defining
9-12 3-CT-M-1 Thinking Modularity .
be used for the subtasks of a decomposed problem. . Computational Problems
& Programming
Create computational artifacts by incorporating pre- Computational Creatine Combutational
9-12 3-CT-M-2 defined procedures, self-defined procedures and Thinking Modularity Arti facti P
external artifacts. & Programming
* Creating Computational
. Artifacts
Develop a plan that describes what a computational Computational
K-2 1A-CT-CD-1 Thinking Computational Design

artifact should look like and how it should perform.

& Programming

* Communicating About
Computing

Identify a task that includes sequences and simple

Computational

Testing & Refining

K-2 1A-CT-CD-2 loops Thlnklng. Computational Design Computational Artifacts
& Programming
* Fostering An Inclusive
Use an iterative process to plan the development Computational Computing Culture
3-5 1B-CT-CD-1 | of a computational artifact by including others’ Thinking Computational Design
perspectives and considering user preferences. & Programming + Creating Computational
Artifacts
Debug errors in an algorithm or program that Computational Testing & Refinin
3-5 1B-CT-CD-2 | . & 8ot pTog Thinking Computational Design S &
includes sequences and simple loops. . Computational Artifacts
& Programming
Describe steps taken and choices made during the Computational Communicating About
3-5 1B-CT-CD-3 ps & . . & Thinking Computational Design . &
process of creating a computational artifact. q Computing
& Programming
* Fostering An Inclusive
Seek and incorporate feedback from team members Computational Computing Culture
6-8 | 2-CT-CD-1 P . Thinking Computational Design
and users to refine a solution that meets user needs. & Programmin
8 8 * Collaborating Around
Computing
Test and debug a program to ensure it runs as Computational Testing & Refinin
6-8 2-CT-CD-2 | . &4 Ppros Thinking Computational Design S &
intended. . Computational Artifacts
& Programming
Describe choices made during development of Computational Communicating About
6-8 2-CT-CD-3 . . & p Thinking Computational Design . &
computational artifacts. . Computing
& Programming
Systematically design and implement computational Computational . .
9-12 3-CT-CD-1 | artifacts for targeted audiences by incorporating Thinking Computational Design Creating Computational

feedback from users.

& Programming

Artifacts

Systematically test and refine programs using a

Computational

Testing & Refining

12 3-CTCD-2 range of test cases. Thlnklng. Computational Design Computational Artifacts
& Programming
Document computational artifacts in order to make Computational Communicating About
9-12 3-CT-CD-3 . p Thinking Computational Design . &
them easier to follow, test, and debug. . Computing
& Programming
K2 1A-CSN-H-1 Identify the inputs and outputs of a computer Human-Computer Commur.ucatlng About
system. Interfaces Computing
Describe how people interact with the various parts Human-Computer Communicating About
3-5 1B-CSN-H-1 . . .
of computing systems to accomplish tasks. Interfaces Computing
Ide1‘1t1fy improvements to tl'.le design of corpputmg Fuman-Computer Fostering An Inclusive
6-8 2-CSN-H-1 | devices, based on an analysis of how users interact :
. . Interfaces Computing Culture
with the devices.
Analyze a computing system and explain how
9-12 3-CSN-H-1 abstractions simplify the underlying implementation Human-Computer Developing & Using
details embedded in everyday objects Interfaces Abstractions
Use appropriate terminology in identifying and .
K-2 | 1A-CSN-HS-1 | describing the function of common physical Hardware and Software ggzmlirilrllcatmg About
components of computing systems (hardware). puting
3.5 1B-CSN-HS-1 Model how computer hardware and software work Hardware and Software Developing & Using

together as a system to accomplish tasks.

Abstractions

6-8

2-CSN-HS-1

Design projects that combine hardware and software

components to collect and use data to perform a
function.

9-12

3-CSN-HS-1

Compare levels of abstraction and interactions
between application software, system software, and
hardware layers.

Hardware and Software

Creating Computational
Artifacts

1A-CSN-T-1

Describe basic hardware and software problems
using appropriate terminology.

Hardware and Software

Developing & Using
Abstractions

3-5

1B-CSN-T-1

Determine potential solutions to solve simple
hardware and software problems using common
troubleshooting strategies.

* Testing & Refining
Computational Artifacts

6-8

2-CSN-T-1

Identify and fix problems with computing devices
and their components using a systematic
troubleshooting method or guide.

9-12

3-CSN-T-1

Develop and communicate troubleshooting
strategies others can use to identify and fix errors.

1A-CSN-N-1

Describe the Internet as a place to share and find
information.

Troubleshooting
* Communicating About
Computing
. Testing & Refining
Troubleshooting Computational Artifacts
. Testing & Refining
Troubleshooting Computational Artifacts
Troubleshooting Testing & Refining

Computational Artifacts

Networks and the
Internet

Communicating About
Computing

Model how information is broken down into
smaller pieces of data, transmitted as packets

Networks and the
Internet

Developing & Using
Abstractions

Networks and the
Internet

Developing & Using
Abstractions

Networks and the

Communicating About

33 1B-CSN-N-1 through multiple devices over networks and the
Internet, and reassembled at the destination.

6-8 9-CSN-N-1 Model the role of protocols in transmitting data
across networks and the Internet.
Identify the various elements of a network and

9-12 3-CSN-N-1 | describe how they function and interact to
transfer information.

K2 1A-CY-R-1 Keep login ar}d personal 1pformat10r1 private, and
log off of devices appropriately.

3.5 1B-CY-R.1 Descrlbé the risks of sharl.ng personal information,
on websites or other public forums.

3.5 1B-CY-R-2 Desc‘rlbe ways personal information can be
obtained digitally.

3.5 1B-CY-R.3 Describe the rlsk.s of others using one’s personal
resources or devices.
Describe tradeoffs between allowing information to

6-8 2-CY-R-1 be public and keeping information private and

secure.

Internet Computing

Risks Using Tthnology
Appropriately

Risks Using Tef:hnology
Appropriately

Risks Using Tthnology
Appropriately

Risks Using Tthnology
Appropriately

Risks Using Te.chnology
Appropriately

Describe social engineering attacks and the potential

6-8 2CYR2 risks associated with them.

6-8 2-CY-R-3 Describe risks of using free and open services.
Explain the privacy concerns related to the collection

9-12 3-CY-R-1 and generation of data through automated processes
that may not be evident to users.
Analyze an existing or proposed application to

9-12 3-CY-R-2 identify the potential ways it could be used to obtain
sensitive information.

9-12 3-CY-R-3 Explain how the digital se.curlty (?f an organization
may be affected by the actions of its employees.

K-2 1A-CY-S-1 Recognize basic digital security features.

3.5 1B-CY-S-1 Explain .1nfi1V1dual ?ctlons that'protect personal
electronic information and devices.

6-8 9-CY-S-1 Explain phys1ca¥ apd dlglta.I security measures that
protect electronic information.

6-8 9-CY-S-2 Demonstrate how multiple methods of encryption

provide secure transmission of information.

Risks Using Tthnology
Appropriately
Risks Using Tthnology
Appropriately
Risks Using Technology
Appropriately
* Recognizing & Defining
Computational Problems
Risks
* Using Technology
Appropriately
Risks Using Technology
Appropriately
Safeguards Using Tefihnology
Appropriately
Safeguards Using Tefihnology
Appropriately
Safeguards Using Te.Chnology
Appropriately
Safeguards Using Technology

Appropriately

Recommend security measures to address various

9-12 3-CY-S-1 scenarios based on factors such as efficiency, Safeguards Using Tthnology
. - Appropriately
feasibility, and ethical impacts.
9-12 3-CY-S-2 Explain tra‘deoffs when selec‘tmg and implementing Safeguards Using Te.chnology
cybersecurity recommendations. Appropriately
Identify situations with applications and devices Using Technology
K2 LA-CY-RP-1 that should be reported to a responsible adult. Response Appropriately
Identify and describe unusual data or behaviors of Usine Technolo
3-5 1B-CY-RP-1 | applications and devices that should be reported to Response 6 ~e &Y
. Appropriately
a responsible adult.
Describe which actions to take and not to take Usine Technolo
6-8 2-CY-RP-1 when an application or device reports a problem Response 6 ~e 8y
Appropriately
or behaves unexpectedly.
Describe the appropriate actions to take in response Using Technology
o-12 3-CY-RP-L to detected security breaches. Response Appropriately
* Developing & Using
Abstractions
. . Collection, Visualization,
K-2 | 1A-DA-CVT-1 | Collect and present the same data in multiple formats.

Transformation

* Communicating About

Computing

Organize and present collected data to highlight

Collection, Visualization,
Transformation

Developing & Using
Abstractions

Communicating About
Computing

Collection, Visualization,
Transformation

Testing & Refining
Computational Artifacts

Collection, Visualization,
Transformation

* Developing & Using
